Ming-Yang Ho

  • Citations Per Year
Learn More
Chlorophyll f (Chl f) permits some cyanobacteria to expand the spectral range for photosynthesis by absorbing far-red light. We used reverse genetics and heterologous expression to identify the enzyme for Chl f synthesis. Null mutants of "super-rogue" psbA4 genes, divergent paralogs of psbA genes encoding the D1 core subunit of photosystem II, abolished Chl(More)
Algal triacylglycerol biosynthesis is of increasing interest for potential biodiesel production. A model microalga, Chlamydomonas, has multiple isoforms of diacylglycerol acyltransferase type 2 (DGTT) catalyzing the final step of triacylglycerol biosynthesis; however, the functions of the isoforms are poorly understood. Here, we performed heterologous(More)
Far-red light photoacclimation (FaRLiP) is a mechanism that allows some cyanobacteria to utilize far-red light (FRL) for oxygenic photosynthesis. During FaRLiP, cyanobacteria remodel photosystem (PS) I, PS II, and phycobilisomes while synthesizing Chl d, Chl f, and far-red-absorbing phycobiliproteins, and these changes enable these organisms to use FRL for(More)
Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those(More)
Most cyanobacteria are obligate oxygenic photoautotrophs, and thus their growth and survival is highly dependent on effective utilization of incident light. Cyanobacteria have evolved a diverse set of phytochromes and cyanobacteriochromes (CBCRs) that allow cells to respond to light in the range from ∼300nm to ∼750nm. Together with associated response(More)
  • 1