Learn More
The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted(More)
The rich structure of bright and dark surface-plasmon modes localized in individual and coupled gold nanoparticles is unveiled by electron-energy-loss spectroscopy performed in a scanning transmission electron microscope. Spatially resolved maps of surface-plasmon modes in the approximately 1.5-2.5 eV range (wavelengths approximately 500-800 nm), collected(More)
This work presents polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) and TiO2 nanorod hybrid bulk heterojunctions. Interface modification of a TiO2 nanorod surface is conducted to yield a very promising device performance of 2.20% with a short circuit current density (J(sc)) of 4.33 mA/cm2, an open circuit voltage (V(oc)) of 0.78 V, and a(More)
In this study, we investigated the interplay of three-dimensional morphologies and the photocarrier dynamics of polymer/inorganic nanocrystal hybrid photoactive layers consisting of TiO(2) nanoparticles and nanorods. Electron tomography based on scanning transmission electron microscopy using high-angle annular dark-field imaging was performed to analyze(More)
With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this(More)
Here, we demonstrate that non-dipole allowed d-d excitations in NiO can be measured by electron energy loss spectroscopy (EELS) in transmission electron microscopes (TEM). Strong excitations from (3)A(2g) ground states to (3)T(1g) excited states are measured at 1.7 and 3 eV when transferred momentum are beyond 1.5 A(-1). We show that these d-d excitations(More)
Essential structural properties of the non-trivial "string-wall-bounded" topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a "string-wall-bounded" configuration in RMnO3 is shown to be strongly linked with the transformation of(More)
By using a real space multiple scattering method (FEFF code) with a 2 × 2 × 2 cluster model, we investigated the effects of characteristic Jahn-Teller distortion on the electron energy loss near-edge structure (ELNES) of Mn3O4 spinel. In particular, we examined a correlation between the characteristics of the density of state and the ELNES spectral feature(More)
Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of approximately 30-90nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-A electron probe. Positioning the electron probe upon transmission(More)
Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (approximately 30(More)