Ming Wah Wong

Learn More
Oxyanion holes are commonly found in many enzyme structures. They are crucial for the stabilization of high-energy oxyanion intermediates or transition states through hydrogen bonding. Typical functionalities found in enzyme oxyanion holes or chemically designed oxyanion-hole mimics are N-H and O-H groups. Through DFT calculations, we show that asymmetric(More)
A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to(More)
The structures of a large number of isomers of the sulfur oxides S(n)O with n = 4-9 have been calculated at the G3X(MP2) level of theory. In most cases, homocyclic molecules with exocyclic oxygen atoms in an axial position are the global minimum structures. Perfect agreement is obtained with experimentally determined structures of S(7)O and S(8)O. The most(More)
Zinc chemicals are used as activators in the vulcanization of organic polymers with sulfur to produce elastic rubbers. In this work, the reactions of Zn(2+), ZnMe(2), Zn(OMe)(2), Zn(OOCMe)(2), and the heterocubane cluster Zn(4)O(4) with the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and with the related radicals and anions Me(2)NCS(2)(*),(More)
The structures and energetics of eight substituted bis(thiocarbonyl)disulfides (RCS(2))(2), their associated radicals RCS(2)(*), and their coordination compounds with a lithium cation have been studied at the G3X(MP2) level of theory for R = H, Me, F, Cl, OMe, SMe, NMe(2), and PMe(2). The effects of substituents on the dissociation of (RCS(2))(2) to(More)
Using high-level ab initio MO methods, we have identified two reaction pathways with different thermodynamic and kinetic properties for the thermal decomposition of the three-membered heterocycle thiirane (C2H4S) and related derivatives. A homolytic ring opening, followed by attack of the generated diradical on another thiirane molecule, and subsequent(More)
High-level ab initio calculations at the CCSD(T)/aug-cc-pVTZ//MP2/aug(d,p)-6-311G(d,p) level were employed to investigate the cooperative CH/pi effects between the pi face of benzene and several modeled saturated hydrocarbons, propane, isobutane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclopentane, cyclooctane, and bicyclo[2.2.2]octane. In(More)
Diallyl trisulfide (DATS) reacts rapidly with glutathione (GSH) to release H2S through thiol-disulfide exchange followed by allyl perthiol reduction by GSH. Yet diallyl disulfide (DADS) only releases a minute amount of H2S via a sluggish reaction with GSH through an α-carbon nucleophilic substitution pathway. The results clarify the misunderstanding of DADS(More)