Learn More
The Asian longhorned beetle (Anoplophoraglabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We(More)
Wood-feeding insects often work in collaboration with microbial symbionts to degrade lignin biopolymers and release glucose and other fermentable sugars from recalcitrant plant cell wall carbohydrates, including cellulose and hemicellulose. Here, we present the midgut transcriptome of larval Anoplophora glabripennis, a wood-boring beetle with documented(More)
White-rot fungi secret a large number of hydrolytic and oxidative enzymes for degradation of lignocellulosic material. The sequencing of the genome of the white-rot fungus Phanerochaete chrysosporium has facilitated the characterization of its complete extracellular proteome. P. chrysosporium was grown on liquid medium, containing glucose, cellulose or wood(More)
Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects(More)
BACKGROUND Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to(More)
Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages.(More)
Culture-independent analysis of the gut of a wood-boring insect, Anoplophora glabripennis (Coleoptera: Cerambycidae), revealed a consistent association between members of the fungal Fusarium solani species complex and the larval stage of both colony-derived and wild A. glabripennis populations. Using the translation elongation factor 1-alpha region for(More)
[1] Although changes in bulk electrical conductivity (b) in aquifers have been attributed to microbial activity, b has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify(More)
Dissimilatory metal-reducing bacteria perform extracellular electron transfer, a metabolic trait that is at the core of a wide range of biotechnological applications. To better understand how these microorganisms transfer electrons from their metabolism to an extracellular electron acceptor, it is necessary to characterize in detail the key players in this(More)
Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase(More)