Learn More
The active site amino acid residues of lignin peroxidase are homologous to those of other peroxidases; however, in contrast to other peroxidases, no pH dependence is observed for the reaction of ferric lignin peroxidase with H2O2 to form compound I (Andrawis, A., Johnson, K.A., and Tien, M. (1988) J. Biol. Chem. 263, 1195-1198). Chloride binding is used in(More)
Phanerochaete chrysosporium is rapidly becoming a model system for the study of lignin biodegradation. Numerous studies on the physiology, biochemistry, chemistry, and genetics of this system have been performed. However, P. chrysosporium is not the only fungus to have a lignin-degrading enzyme system. Many other ligninolytic species of fungi, as well as(More)
We have used scaling kinetics and the concept of kinetic competence to elucidate the role of hemeproteins OmcA and MtrC in iron reduction by Shewanella oneidensis MR-1. Second-order rate constants for OmcA and MtrC were determined by single-turnover experiments. For soluble iron species, a stopped-flow apparatus was used, and for the less reactive iron(More)
  • M Tien, T K Kirk
  • 1984
An extracellular lignin-degrading enzyme from the basidiomycete Phanerochaete chrysosporium Burdsall was purified to homogeneity by ion-exchange chromatography. The 42,000-dalton ligninase contains one protoheme IX per molecule. It catalyzes, nonstereospecifically, several oxidations in the alkyl side chains of lignin-related compounds: C(alpha)-C(beta)(More)
Manganese peroxidase from the lignin-degrading fungus Phanerochaete chrysosporium catalyzes the H2O2-dependent oxidation of Mn2+ to Mn3+. Presteady-state methods were employed to characterize the reactions of free and chelated Mn2+ with the 2-electron and 1-electron oxidized forms of the enzyme, compounds I and II, respectively. At pH 4.5, the optimum pH(More)
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant,(More)
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of(More)
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid(More)
The lignin peroxidases (LiPs) of white-rot basidiomycetes are generally thought to catalyze the oxidative cleavage of polymeric lignin in vivo. However, direct evidence for such a role has been lacking. In this investigation, 14C- and 13C-labeled synthetic lignins were oxidized with a purified isozyme of Phanerochaete chrysosporium LiP. Gel permeation(More)