Learn More
This study was designed to define the potential clinical relevance of identifying alterations affecting p53 pathway in bladder cancer and to test a new, low-cost, high-throughput, and array-based TP53 sequencing technology. Tumor samples from 140 evaluable patients with bladder cancer were analyzed with two methods to detect TP53 gene mutations, including(More)
Tobacco smoke and its metabolites are carcinogens that increase tissue oxidative stress and induce target tissue inflammation. We hypothesized that genetic variation of inflammatory pathway genes plays a role in tobacco-related carcinogenesis and is modified by tobacco smoking. We evaluated the association of 12 single nucleotide polymorphisms of 8(More)
Recent genome-wide association studies identified key single nucleotide polymorphisms (SNPs) in the 8q24 region to be associated with prostate cancer. 8q24 SNPs have also been associated with colorectal cancer, suggesting that this region may not be specifically associated to just prostate cancer. To date, the association between these polymorphisms and(More)
Constituents of tobacco smoke can cause DNA double-strand breaks (DSBs), leading to tumorigenesis. The NBS1 gene product is a vital component in DSB detection and repair, thus genetic variations may influence cancer development. We examined the associations between NBS1 polymorphisms and haplotypes and newly incident smoking-related cancers in three(More)
UNLABELLED We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero and four errors in the predicted 1300 bp sequence when(More)
  • 1