Learn More
Optical communications and computing require on-chip nonreciprocal light propagation to isolate and stabilize different chip-scale optical components. We have designed and fabricated a metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a(More)
Invisibility by metamaterials is of great interest, where optical properties are manipulated in the real permittivity-permeability plane. However, the most effective approach to achieving invisibility in various military applications is to absorb the electromagnetic waves emitted from radar to minimize the corresponding reflection and scattering, such that(More)
PURPOSE This study evaluated the post-implementation impact of a nursing information system and identified issues related to the technology adoption process. Given the high level of investment necessary to implement information systems, evaluation has become vital to ensure successful adoption and use. Improved understanding of implementation(More)
Recently, there has been an increased interest in studying extraordinary optical transmission (EOT) through subwavelength aperture arrays perforated in a metallic film. In this Letter, we report that the transmission of an incident acoustic wave through a one-dimensional acoustic grating can also be drastically enhanced. This extraordinary acoustic(More)
A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1(More)
Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode(More)
Optical birefringence and dichroism are classical and important effects originating from two independent polarizations of optical waves in anisotropic crystals. Furthermore, the distinct dispersion relations of transverse electric and transverse magnetic polarized electromagnetic waves in photonic crystals can lead to birefringence more easily. However, it(More)
Acoustic negative refractions with backward-wave (BW) effects were both theoretically and experimentally established in the second band of a two-dimensional (2D) triangular sonic crystal (SC). Intense Bragg scatterings result in the extreme deformation of the second band equifrequency surface (EFS) into two classes: one around the K point and the other(More)
We demonstrate both theoretically and experimentally the physical mechanism that underlies extraordinary acoustic transmission and collimation of sound through a one-dimensional decorated plate. A microscopic theory considers the total field as the sum of the scattered waves by every periodically aligned groove on the plate, which divides the total field(More)