Ming-Hui Hu

Learn More
Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are(More)
Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by(More)
Membrane proteins fulfill many important roles in the cell and represent the target for a large number of therapeutic drugs. Although structure determination of membrane proteins has become a major priority, it has proven to be technically challenging. Electron microscopy of two-dimensional (2D) crystals has the advantage of visualizing membrane proteins in(More)
PURPOSE To investigate the role of T-cell-mediated immune response in a monophasic experimental autoimmune uveitis (EAU). METHODS A monophasic EAU was induced in Lewis rats by immunization with interphotoreceptor retinoid-binding protein peptide. Optimized quantitative real-time RT-PCR was used for consecutive measurement of the relative expression of(More)
Laggera alata extract (LAE) was quantitatively analyzed, and its principle components isochlorogenic acids were isolated and authenticated. Protective properties of LAE were studied using a d-galactosamine (d-GalN)-induced injury model in neonatal rat hepatocytes and a d-GalN-induced acute liver damage model in mice. Meanwhile, the effect of isochlorogenic(More)
  • 1