Learn More
BACKGROUND Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we developed a cell model (3D5) that inducibly expresses wild-type human α-synuclein and forms inclusions that reproduce many morphological and(More)
APOE4 is the greatest risk factor for Alzheimer disease (AD) and synergistic effects with amyloid-β peptide (Aβ) suggest interactions among apoE isoforms and different forms of Aβ accumulation. However, it remains unclear how the APOE genotype affects plaque morphology, intraneuronal Aβ, soluble Aβ42, and oligomeric Aβ (oAβ), particularly in vivo. As the(More)
Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies (LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells(More)
Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin-treated mice. Because previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared with age-matched controls, and in mice(More)
The formation of Lewy bodies containing α-synuclein (α-syn), prominent loss of dopaminergic neurons and dopamine (DA) deficiency in substantia nigra and striatum are histopathological and biochemical hallmarks of Parkinson's disease (PD). Multiple lines of evidence have indicated that a critical pathogenic factor causing PD is enhanced production of(More)
The pathologic hallmark of Parkinson's disease (PD) is the accumulation of alpha-synuclein (αsyn) in susceptible neurons in the form of Lewy bodies and Lewy neurites. The etiology of PD remains unclear. Because brain injury has been suggested to facilitate αsyn aggregation, we investigated whether cellular breakdown products from damaged cells can act on(More)
Laccase (EC 1.10.3.2) is a member of multicopper oxidases that have been found in higher plants, fungus, bacterium, and insects. Two types of laccase genes have been detected in many species of insects: laccase1 and laccase2. It has been identified that laccase2 enzyme may play a key role in sclerotization and pigmentation of insect cuticle. But few(More)
—Location-based services in a wireless network require nodes to know their locations accurately. Conventional solutions rely on contention-based medium access, where only one node can successfully transmit at any time in any neighborhood. In this paper, a novel, complete, distributed ranging and localization solution is proposed, which let all nodes in the(More)
—An efficient analog network coding transmission protocol is proposed in this letter for a MIMO two way cellular network. Block signal alignment is first proposed to null the inter-user interference for multi-antenna users, which makes the dimensions of aligned space larger compared with the existing signal alignment. Two algorithms are developed to jointly(More)
The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor abundantly expressed in neurons. Increasing evidence demonstrates that LRP1 regulates synaptic integrity and function at the post synapses, at least partially by regulating glutamate receptors. The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(More)