Learn More
Power control is becoming a key challenge for effectively operating a modern data center. In addition to reducing operation costs, precisely controlling power consumption is an essential way to avoid system failures caused by power capacity overload or overheating due to increasing high-density. Control-theoretic techniques have recently shown a lot of(More)
Optimizing the performance of a multi-core microprocessor within a power budget has recently received a lot of attention. However, most existing solutions are centralized and cannot scale well with the rapidly increasing level of core integration. While a few recent studies propose power control algorithms for many-core architectures, those solutions assume(More)
Both power and performance are important concerns for enterprise data centers. While various management strategies have been developed to effectively reduce server power consumption by transitioning hardware components to lower power states, they cannot be directly applied to today's data centers that rely on virtualization technologies. Virtual machines(More)
In today's data centers, precisely controlling server power consumption is an essential way to avoid system failures caused by power capacity overload or overheating due to increasingly high server density. While various power control strategies have been recently proposed, existing solutions are not scalable to control the power consumption of an entire(More)
Both power and performance are important concerns for enterprise data centers. While various management strategies have been developed to effectively reduce server power consumption by transitioning hardware components to lower-power states, they cannot be directly applied to to-day's data centers that rely on virtualization technologies. Virtual machines(More)
In this paper, we undertake the problem of server consolidation in virtualized data centers from the perspective of approximation algorithms. We formulate server consolidation as a stochastic bin packing problem, where the server capacity and an allowed server overflow probability p are given, and the objective is to assign VMs to as few physical servers as(More)
Power control is becoming a key challenge for effectively operating a modern data center. In addition to reducing operating costs, precisely controlling power consumption is an essential way to avoid system failures caused by power capacity overload or overheating due to increasing high server density. Control-theoretic techniques have recently shown a lot(More)
With the number of high-density servers in data centers rapidly increasing, power control with performance optimization has become a key challenge to gain a high return on investment, by safely accommodating the maximized number of servers allowed by the limited power supply and cooling facilities in a data center. Various power control solutions have been(More)
In today's data centers, precisely controlling server power consumption is an essential way to avoid system failures caused by power capacity overload or overheating due to increasingly high server density. While various power control strategies have been recently proposed, existing solutions are not scalable to control the power consumption of an entire(More)
Real-time image transmission is crucial to an emerging class of distributed embedded systems operating in open network environments. Examples include avionics mission replanning over Link-16, security systems based on wireless camera networks, and online collaboration using camera phones. Meeting image transmission deadlines is a key challenge in such(More)