Ming-Chang Chiang

Learn More
All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of(More)
The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional(More)
UNLABELLED 35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping,(More)
UNLABELLED Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of approximately 20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the(More)
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient(More)
Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7±2.1 years, mean±SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to(More)
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation(More)
Population-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span. We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring(More)
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of(More)