Learn More
In this work, sub-manifold projections based semi-supervised dimensionality reduction (DR) problem learning from partial constrained data is discussed. Two semi-supervised DR algorithms termed Marginal Semi-Supervised Sub-Manifold Projections (MS³MP) and orthogonal MS³MP (OMS³MP) are proposed. MS³MP in the singular case is also discussed. We also present(More)
Dealing with high-dimensional data has always been a major problem in many pattern recognition and machine learning applications. Trace ratio criterion is a criterion that can be applicable to many dimensionality reduction methods as it directly reflects Euclidean distance between data points of within or between classes. In this paper, we analyze the trace(More)
—Visualizing similarity data of different objects by exhibiting more separate organizations with local and multimodal characteristics preserved is important in multivariate data analysis. Laplacian Eigenmaps (LAE) and Locally Linear Embedding (LLE) aim at preserving the embeddings of all similarity pairs in the close vicinity of the reduced output space,(More)
Dementia is one of the most common neurological disorders among the elderly. Identifying those who are of high risk suffering dementia is important to the administration of early treatment in order to slow down the progression of dementia symptoms. However, to achieve accurate classification, significant amount of subject feature information are involved.(More)
Isomap is a well-known nonlinear dimensionality reduction (DR) method, aiming at preserving geodesic distances of all similarity pairs for delivering highly nonlinear manifolds. Isomap is efficient in visualizing synthetic data sets, but it usually delivers unsatisfactory results in benchmark cases. This paper incorporates the pairwise constraints into(More)
A clonal selection programming (CSP)-based fault detection system is developed for performing induction machine fault detection and analysis. Four feature vectors are extracted from power spectra of machine vibration signals. The extracted features are inputs of an CSP-based classifier for fault identification and classification. In this paper, the proposed(More)
This paper presents a two-dimensional Neighborhood Preserving Projection (2DNPP) for appearance-based face representation and recognition. 2DNPP enables us to directly use a feature input of 2D image matrices rather than 1D vectors. We use the same neighborhood weighting procedure that is involved in NPP to form the nearest neighbor affinity graph.(More)
—This paper incorporates the group sparse representation into the well-known canonical correlation analysis (CCA) framework and proposes a novel discriminant feature extraction technique named group sparse canonical correlation analysis (GSCCA). GSCCA uses two sets of variables and aims at preserving the group sparse (GS) characteristics of data within each(More)