Learn More
Despite recent advances in commercially optimized identification systems, bacterial identification remains a challenging task in many routine microbiological laboratories, especially in situations where taxonomically novel isolates are involved. The 16S rRNA gene has been used extensively for this task when coupled with a well-curated database, such as(More)
Among available genome relatedness indices, average nucleotide identity (ANI) is one of the most robust measurements of genomic relatedness between strains, and has great potential in the taxonomy of bacteria and archaea as a substitute for the labour-intensive DNA-DNA hybridization (DDH) technique. An ANI threshold range (95-96%) for species demarcation(More)
Little is known of how bacterial diversity in soils varies with elevation. One previous study found a decline with elevation, whereas another found no trend. We chose Mount Fuji of Japan as a geologically and topographically simple mountain system. Samples were taken at elevational intervals, between the base of the mountain at 1,000 m and its summit at(More)
The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types—primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1–V3 region was pyrosequenced using the 454 Roche(More)
Inhibitory effect of incubation on microbial growth has extensively been studied in wild bird populations using culture-based methods and conflicting results exist on whether incubation selectively affects the growth of microbes on the egg surface. In this study, we employed culture-independent methods, quantitative PCR and 16S rRNA gene pyrosequencing, to(More)
It is becoming a common trend that many designers work on a very complex assembly together in a collaborative environment. In this environment, every designer should be able to see the whole assembly in a full detail or in a rough shape at least. Even though the hardware technology is being improved very rapidly, it is very difficult to display a very(More)
Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found(More)
Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this(More)
It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root(More)
Recent work has suggested that in temperate and subtropical trees, leaf surface bacterial communities are distinctive to each individual tree species and dominated by Alpha- and Gammaproteobacteria. In order to understand how general this pattern is, we studied the phyllosphere bacterial community on leaves of six species of tropical trees at a rainforest(More)