Learn More
Little is known of how bacterial diversity in soils varies with elevation. One previous study found a decline with elevation, whereas another found no trend. We chose Mount Fuji of Japan as a geologically and topographically simple mountain system. Samples were taken at elevational intervals, between the base of the mountain at 1,000 m and its summit at(More)
The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types—primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1–V3 region was pyrosequenced using the 454 Roche(More)
It is becoming a common trend that many designers work on a very complex assembly together in a collaborative environment. In this environment, every designer should be able to see the whole assembly in a full detail or in a rough shape at least. Even though the hardware technology is being improved very rapidly, it is very difficult to display a very(More)
Inhibitory effect of incubation on microbial growth has extensively been studied in wild bird populations using culture-based methods and conflicting results exist on whether incubation selectively affects the growth of microbes on the egg surface. In this study, we employed culture-independent methods, quantitative PCR and 16S rRNA gene pyrosequencing, to(More)
Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this(More)
Recent work has suggested that in temperate and subtropical trees, leaf surface bacterial communities are distinctive to each individual tree species and dominated by Alpha- and Gammaproteobacteria. In order to understand how general this pattern is, we studied the phyllosphere bacterial community on leaves of six species of tropical trees at a rainforest(More)
Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of(More)
Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the(More)
It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root(More)
Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate(More)