Minato Kawaguchi

Learn More
Stochastic resonance (SR) is a noise-induced phenomenon whereby signal detection can be improved by the addition of background noise in nonlinear systems. SR can also improve the transmission of information within single neurons. Since information processing in the brain is carried out by neural networks and noise is present throughout the brain, the(More)
The Gallyas method is a silver impregnation technique that is essential in the field of neuropathology because of its high sensitivity for the detection of argentophilic inclusion bodies in the central nervous system. In Japan, the Gallyas method has improved and is widely used as the "modified Gallyas method". However, this method is not popularly used in(More)
Stochastic resonance (SR) has been shown to improve detection of sub-threshold signals with additive uncor-related background noise, not only in a single hippocampal CA1 neuron model, but in a population of hippocampal CA1 neuron models (Array-Enhanced Stochastic Resonance; AESR). However, most of the information in the CNS is transmitted through(More)
Stochastic resonance (SR) has been shown to improve the detection of subthreshold neural signals in uncorrelated noise. It is yet unclear if and how interactions within a population of neurons can improve information processing in neural networks. In this paper, we investigate the effect of the number of neurons on information transmission in an array of(More)
Stochastic resonance (SR) is a ubiquitous and counter- intuitive phenomenon whereby the addition of noise to a non-linear system can improve the detection of sub-threshold signals. The "signal" is normally periodic or deterministic whereas the "noise" is normally stochastic. However, in neural systems, signals are often stochastic. Moreover, periodic(More)
This paper presents a novel type of stochastic resonance (SR) with a mixture of sub- and supra-threshold stimuli in a population of neuron models beyond regular SR and Supra-threshold SR (SSR) phenomena. We investigate through computer simulations if the novel type of SR can be observed or not, using the mutual information (MI) estimated from a population(More)
Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal(More)
This article presents an analysis of the information transmission of periodic sub-threshold spike trains in a hippocampal CA1 neuron model in the presence of a homogeneous Poisson shot noise. In the computer simulation, periodic sub-threshold spike trains were presented repeatedly to the midpoint of the main apical branch, while the homogeneous Poisson shot(More)
Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we test the hypothesis that SR can improve information transmission in the hippocampus. From spike firing times(More)
  • 1