Mina Delawary

Learn More
Phosphorylation of neural proteins in response to a diverse array of external stimuli is one of the main mechanisms underlying dynamic changes in neural circuitry. The NR2B subunit of the NMDA receptor is tyrosine-phosphorylated in the brain, with Tyr-1472 its major phosphorylation site. Here, we generate mice with a knockin mutation of the Tyr-1472 site to(More)
Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell(More)
Previous studies found that the NMDA receptor-mediated signaling regulates thermal nociception, though the underlying molecular mechanism remains unclear. The GluN2B subunit of the NMDA receptor is tyrosine-phosphorylated, Tyr-1472 being the major phosphorylation site. In this study, we have found that homozygous knock-in mice that express a Tyr-1472-Phe(More)
Anxiety disorders are a highly prevalent and disabling class of psychiatric disorders. There is growing evidence implicating the glutamate system in the pathophysiology and treatment of anxiety disorders, though the molecular mechanism by which the glutamate system regulates anxiety-like behavior remains unclear. In this study, we provide evidence(More)
in mammals such as emotion, and learning and memory. We are especially focusing on the roles of functional molecules localized in synapses, for instance, neurotransmitter receptors, signal transduction molecules and adhesion molecules, in neuronal information processing. We are examining receptor functions, synaptic transmission and plasticity, and their(More)
The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP(More)
Neurotensin receptor subtype 2 (Ntsr2) is a levocabastine-sensitive neurotensin receptor expressed diffusely throughout the mouse brain. Previously, we found that Ntsr2-deficient mice have an abnormality in the processing of thermal nociception. In this study, to examine the involvement of Ntsr2 in mouse behavior, we performed a fear-conditioning test in(More)
The bph operon of Pseudomonas sp. KKS102 is constituted of 11 bph genes which encode enzymes for biphenyl assimilation. Growth of a mutant in which a large part of the bph operon was deleted was inhibited by biphenyl in a concentration-dependent manner. We constructed a series of bph operon deletion mutants and tested for their biphenyl sensitivity. Growth(More)
To improve the capabilities of microorganisms relevant for biodegradation, we developed a new genetic approach and applied it to the bph operon (bphEGF[orf4]A1A2A3CD[orf1]A4R) of Pseudomonas sp. strain KKS102 to enhance its biphenyl- and polychlorinated biphenyl (PCB)-degrading activity. A native promoter of the bph operon, which was under control, was(More)
The bph genes in Pseudomonas sp. KKS102, which are involved in the degradation of polychlorinated biphenyl/biphenyl, are induced in the presence of biphenyl. In this study our goal was to understand the regulatory mechanisms involved in the inducible expression. The bph genes (bphEGF(orf4)A1A2A3BCD(orf1)A4R) constitute an operon, and its expression is(More)
  • 1