Learn More
It is well established that axons of the adult mammalian CNS are capable of regrowing only a limited amount after injury. Astrocytes are believed to play a crucial role in the failure to regenerate, producing multiple inhibitory proteoglycans, such as chondroitin sulphate proteoglycans (CSPGs). After spinal cord injury (SCI), astrocytes become hypertrophic(More)
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced(More)
BACKGROUND The traditional Chinese theory of acupuncture emphasizes that the intensity of acupuncture must reach a threshold to generate de qi, which is necessary to achieve the best therapeutic effect. De qi is an internal compound sensation of soreness, tingling, fullness, aching, cool, warmth and heaviness, and a radiating sensation at and around the(More)
Astrogliosis occurs after brain ischemia, and excessive astrogliosis can devastate the neuronal recovery. Previous reports show that galectin-1 (Gal-1) regulates proliferation of several cell types and plays an important role after nervous system injuries. Here, we found that expression of Gal-1 was remarkably up-regulated in activated astrocytes around(More)
The spinal cord is well known to undergo inflammatory reactions in response to traumatic injury. Activation and proliferation of microglial cells, with associated proinflammatory cytokines expression, plays an important role in the secondary damage following spinal cord injury. It is likely that microglial cells are at the center of injury cascade and are(More)
As a physical barrier to regenerating axons, reactive astrogliosis is also a biochemical barrier which can secrete inhibitory molecules, including chondroitin sulfate proteoglycans (CSPGs) in the pathological mechanism of spinal cord injury (SCI). Thus, inhibition of astroglial proliferation and CSPG production might facilitate axonal regeneration after(More)
Microglial activation/proliferation and reactive astrogliosis are commonly observed and have been considered to be closely relevant pathological processes during spinal cord injury (SCI). However, the molecular mechanisms underlying this microglial-astroglial interaction are still poorly understood. We showed recently that the continuous injection of the(More)
Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI); epidermal growth factor receptor (EGFR) signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation,(More)
β-amyloid (Aβ) aggregates are known to induce neuronal and synaptic dysfunction, and thus are involved in learning and memory deficits in Alzheimer's disease (AD), making Aβ deposits a potential target for prevention or treatment. Microglia, especially bone marrow-derived microglia (BMDM), has been recently thought to play important roles in internalizing(More)
Galectin-1, an endogenous mammalian lectin, has been implicated in a variety of CNS disorders. However, its role in cerebral ischemia is still elusive. In the present study, we investigated the effect of recombinant galectin-1 on production of astrocytic brain-derived neurotrophic factor (BDNF) and functional recovery following ischemia. Endogenous(More)