Learn More
It is well established that axons of the adult mammalian CNS are capable of regrowing only a limited amount after injury. Astrocytes are believed to play a crucial role in the failure to regenerate, producing multiple inhibitory proteoglycans, such as chondroitin sulphate proteoglycans (CSPGs). After spinal cord injury (SCI), astrocytes become hypertrophic(More)
Astrogliosis occurs after brain ischemia, and excessive astrogliosis can devastate the neuronal recovery. Previous reports show that galectin-1 (Gal-1) regulates proliferation of several cell types and plays an important role after nervous system injuries. Here, we found that expression of Gal-1 was remarkably up-regulated in activated astrocytes around(More)
The spinal cord is well known to undergo inflammatory reactions in response to traumatic injury. Activation and proliferation of microglial cells, with associated proinflammatory cytokines expression, plays an important role in the secondary damage following spinal cord injury. It is likely that microglial cells are at the center of injury cascade and are(More)
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced(More)
As a physical barrier to regenerating axons, reactive astrogliosis is also a biochemical barrier which can secrete inhibitory molecules, including chondroitin sulfate proteoglycans (CSPGs) in the pathological mechanism of spinal cord injury (SCI). Thus, inhibition of astroglial proliferation and CSPG production might facilitate axonal regeneration after(More)
Galectin-1, an endogenous mammalian lectin, has been implicated in a variety of CNS disorders. However, its role in cerebral ischemia is still elusive. In the present study, we investigated the effect of recombinant galectin-1 on production of astrocytic brain-derived neurotrophic factor (BDNF) and functional recovery following ischemia. Endogenous(More)
Astroglial proliferation and delayed neuronal death are two common pathological processes in the ischemic brain. However, it is not clear if astrogliosis causes delayed neuronal death. In this study, we addressed this potential linkage by examining the relationship between attenuated astrocyte proliferation, induced by cyclin-dependent kinase (CDK)(More)
Microglial activation/proliferation and reactive astrogliosis are commonly observed and have been considered to be closely relevant pathological processes during spinal cord injury (SCI). However, the molecular mechanisms underlying this microglial-astroglial interaction are still poorly understood. We showed recently that the continuous injection of the(More)
Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI); epidermal growth factor receptor (EGFR) signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation,(More)
Reactive astrogliosis is one of the key components of the cellular response to CNS injury and is considered a major impediment to axonal regeneration. Our previous study demonstrated that cell cycle inhibition treatment can reduce astrocyte activation and proliferation in vivo. In this study, we examined whether reactive astrogliosis can be suppressed by(More)