Learn More
Glia show marked heterogeneity in terms of electrophysiology in the developing brain, and two major types can be identified based on GFAP or NG2 expression. However, it remains to be determined if such an electrophysiological diversity holds for the adult brain and how GFAP and NG2 lineage glia are associated with different electrophysiological phenotypes(More)
Gap junction communication between astrocytes is prevalent and has been proposed to be involved in several astrocyte functions. One such proposal involves gap junctions in potassium spatial buffering. However, little is known about the developmental time course of gap junction coupling and how much the syncytium affects whole cell measurements of ion(More)
OBJECTIVE To study the efficacy of post-ischemic mild brain hypothermia lasting for different time intervals on cerebral ischemic reperfusion injury. METHOD Male Sprague-Dawley rats were divided into a sham-operated group, normothermia (37-38 degrees C) ischemia group and mild hypothermia (31-32 degrees C) group. The last group was subdivided into four(More)
We have recently described a subgroup of isolated glial fibrillary acidic protein-positive (GFAP+) hippocampal astrocytes that predominantly express outwardly rectifying currents (which we term "ORAs" for outwardly rectifying astrocytes), which are similar to the currents already described for hippocampal GFAP- "complex glia." We now report that(More)
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the(More)
Radioresistance is a challenge in the treatment of patients with colorectal cancer (CRC). Individuals display different therapeutic responses to preoperative radiotherapy, and the need of targeted therapies is urgent. MicroRNAs (miRNAs) are involved in essential biological activities, including chemoresistance and radioresistance. Several research studies(More)
Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated(More)
Expression of a linear current-voltage (I-V) relationship (passive) K(+) membrane conductance is a hallmark of mature hippocampal astrocytes. However, the molecular identifications of the K(+) channels underlying this passive conductance remain unknown. We provide the following evidence supporting significant contribution of the two-pore domain K(+) channel(More)
PURPOSE Senescent Ccl2(-/-) mice are reported to develop cardinal features of human age-related macular degeneration (AMD). Loss-of-function single-nucleotide polymorphisms within CX3CR1 are also found to be associated with AMD. The authors generated Ccl2(-/-)/Cx3cr1(-/-) mice to establish a more characteristic and reproducible AMD model. METHODS Single(More)
Accumulating evidence indicates that the polyphenol resveratrol (trans-3, 5, 4"-trihydroxystibene, RVT) potently protects against cerebral ischemia neuronal damage due to its oxygen free radicals scavenging and antioxidant properties. However, it is unknown whether RVT can attenuate ischemia-induced early impairment of neuronal excitability. To address this(More)