Learn More
Dendritic spines are dynamic, actin-rich structures that form the postsynaptic sites of most excitatory synapses in the brain. The F-actin severing protein cofilin has been implicated in the remodeling of dendritic spines and synapses under normal and pathological conditions, by yet unknown mechanisms. Here we report that β-arrestin-2 plays an important(More)
A prominent area of neuroscience research over the past 20 years has been the acute modulation of neuronal synaptic activity by Ca(2+)-dependent release of the transmitters ATP, D-serine, and glutamate (called gliotransmitters) by astrocytes. Although the physiological relevance of this mechanism is under debate, emerging evidence suggests that there are(More)
One of the most important functions of astrocytes is removal of glutamate released during synaptic transmission. Surprisingly, the mechanisms by which astrocyte glutamate uptake is acutely modulated remain to be clarified. Astrocytes express metabotropic glutamate receptors (mGluRs) and other G protein-coupled receptors (GPCRs), which are activated during(More)
Transgenic lines expressing a controllable form of Cre recombinase have become valuable tools for manipulating gene expression in adult neural progenitors and their progeny. Neural progenitors express several proteins that distinguish them from mature neurons, and the promoters for these genes have been co-opted to produce selective transgene expression(More)
Astrocyte Gq GPCR and IP3 receptor-dependent Ca(2+) elevations occur spontaneously in situ and in vivo. These events vary considerably in size, often remaining confined to small territories of astrocyte processes called "microdomains" and sometimes propagating over longer distances that can include the soma. It has remained unclear whether these events are(More)
Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic(More)
  • 1