Learn More
Data-driven fuzzy modeling has been used in a wide variety of applications. However, in fuzzy rule-based models acquired from numerical data, redundancy often exists in the form of redundant rules or similar fuzzy sets. This results in unnecessary structural complexity and decreases the interpretability of the system. In this paper, a rule-base(More)
A simple and e!ective method for selecting signi"cant input variables and determining optimal number of fuzzy rules when building a fuzzy model from data is proposed. In contrast to the existing clustering-based methods, in this approach both input selecting and partition validating are determined on the basis of a class of sub-clusters created by a(More)
A systematic neural-fuzzy modeling framework that includes the initial fuzzy model self-generation, significant input selection, partition validation, parameter optimization, and rule-base simplification is proposed in this paper. In this framework, the structure identification and parameter optimization are carried out automatically and efficiently by the(More)
This paper evaluates the use of the fuzzy k-means clustering method for the clustering of files of 2D chemical structures. Simulated property prediction experiments with the Starlist file of logP values demonstrate that use of the fuzzy k-means method can, in some cases, yield results that are superior to those obtained with the conventional k-means method(More)
New techniques for the prediction of tumour behaviour are needed since statistical analysis has a poor accuracy and is not applicable to the individual. Artificial Intelligence (AI) may provide these suitable methods. We have compared the predictive accuracies of neuro-fuzzy modelling (NFM), artificial neural networks (ANN) and traditional statistical(More)