Learn More
Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report(More)
DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family and acts as a corepressor of a number of nuclear receptors. HNF4alpha (hepatocyte nuclear factor 4alpha) is a liver-enriched transcription factor that controls the expression of a variety of genes(More)
Endoplasmic reticulum (ER)-bound transcription factor families are shown to be involved in the control of various metabolic pathways. Here, we report a critical function of ER-bound transcription factor, CREBH, in the regulation of hepatic gluconeogenesis. Expression of CREBH is markedly induced by fasting or in the insulin-resistant state in rodents in a(More)
Orphan nuclear receptor small heterodimer partner (SHP) plays a key role in transcriptional repression of gluconeogenic enzyme gene expression. Here, we show that SHP inhibited protein kinase A-mediated transcriptional activity of cAMP-response element-binding protein (CREB), a major regulator of glucose metabolism, to modulate hepatic gluconeogenic gene(More)
The bacterial plant pathogen Pseudomonas syringae injects a large repertoire of effector proteins into plant cells using a type III secretion apparatus. Effectors can trigger or suppress defences in a host-dependent fashion. Host defences are often accompanied by programmed cell death, while interference with defences is sometimes associated with cell death(More)
Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in(More)
Exposure to DNA-damaging agents can activate cell cycle checkpoint and DNA repair processes to ensure genetic integrity. Such exposures also can affect the transcription of many genes required for these processes. In the budding yeast Saccharomyces cerevisiae, changes of global gene expression as a result of a DNA-damaging agent were previously identified(More)
Liver plays a major role in regulating energy homeostasis in mammals. During feeding conditions, excessive glucose is converted into a preferred storage form of energy sources as triacylglycerol in liver via a collective metabolic pathway termed lipogenesis. Sterol regulatory element-binding protein 1c is a master regulator for this process by activating(More)
Growth factors accelerate G0 to S progression in the cell cycle, however, the roles of growth factors in other cell cycle phases are largely unknown. Here, we show that treatment of HeLa cells with hepatocyte growth factor (HGF) at G2 phase induced the G2/M transition delay as evidenced by FACS analysis as well as by mitotic index and time-lapse analyses.(More)
Fasting promotes hepatic gluconeogenesis to maintain glucose homeostasis. The cAMP-response element binding protein (CREB)-regulated transcriptional coactivator 2 (CRTC2) is responsible for transcriptional activation of gluconeogenic genes and is critical for conveying the opposing hormonal signals of glucagon and insulin in the liver. Here, we show that(More)