Learn More
Adipocyte differentiation requires the coordinated activities of several nuclear transcription factors. Recently, mitochondria biogenesis was reported to occur during adipocyte differentiation and following treatment with thiazolidinediones in vitro and in vivo. Crif1 is a translational factor for mitochondrial DNA (mtDNA) and is important for transcription(More)
There are two causes of Parkinson's disease (PD): environmental insults and genetic mutations of PD-associated genes. Environmental insults and genetic mutations lead to mitochondrial dysfunction, and a combination of mitochondrial dysfunction and increased oxidative stress in dopaminergic neurons is thought to contribute to the pathogenesis of PD. Among(More)
Although substantial progress has been made in understanding the mechanisms underlying the expression of mtDNA-encoded polypeptides, the regulatory factors involved in mitoribosome-mediated synthesis and simultaneous insertion of mitochondrial oxidative phosphorylation (OXPHOS) polypeptides into the inner membrane of mitochondria are still unclear. In the(More)
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin(More)
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is associated with cirrhosis and hepatocellular carcinoma. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play key roles in the development of the disease. However, the therapeutic target of NASH has not been fully defined and new treatments are needed. We investigated the protective(More)
CONTEXT The oncogenic BRAF(V600E) mutation results in an active structural conformation characterized by greatly elevated ERK activity. However, additional cellular effects caused by subcellular action of BRAF(V600E) remain to be identified. OBJECTIVE To explore these effects, differences in the subcellular localization of wild-type and mutant BRAF in(More)
BACKGROUND The BRAF(V600E) mutation leading to constitutive signaling of MEK-ERK pathways causes papillary thyroid cancer (PTC). Ras association domain family 1A (RASSF1A), which is an important regulator of MST1 tumor suppressor pathways, is inactivated by hypermethylation of its promoter region in 20 to 32% of PTC. However, in PTC without RASSF1A(More)
OBJECTIVE The genetic mutations causing the constitutive activation of MEK/ERK have been regarded as an initiating factor in papillary thyroid carcinoma (PTC). The ERK-specific dual specificity phosphatase 6 (DUSP6) is part of the ERK-dependent transcriptional output. Therefore, the coordinated regulation of the activities of ERK kinases and DUSP6 may need(More)
PURPOSE Anaplastic thyroid carcinoma (ATC) is one of the most invasive human cancers and has a poor prognosis. Molecular targets of ATC that determine its highly aggressive nature remain unidentified. This study investigated L1 cell adhesion molecule (L1CAM) expression and its role in tumorigenesis of ATCs. EXPERIMENTAL DESIGN Expression of L1CAM in(More)
PURPOSE NAD(P)H:Quinone Oxidoreductase 1 (NQO1) C609T missense variant (NQO1*2) and 29 basepair (bp)-insertion/deletion (I29/D) polymorphism of the NRH:Quinone Oxidoreductase 2 (NQO2) gene promoter have been proposed as predictive and prognostic factors for cancer development and progression. The purpose of this study is to investigate the relationship(More)