Learn More
Methylation of histone H3 lysine 27 (H3K27) is a posttranslational modification that is highly correlated with genomic silencing. Here we show that human UTX, a member of the Jumonji C family of proteins, is a di- and trimethyl H3K27 demethylase. UTX occupies the promoters of HOX gene clusters and regulates their transcriptional output by modulating the(More)
p53, the tumour suppressor and transcriptional activator, is regulated by numerous post-translational modifications, including lysine methylation. Histone lysine methylation has recently been shown to be reversible; however, it is not known whether non-histone proteins are substrates for demethylation. Here we show that, in human cells, the histone(More)
We have previously described a multiprotein complex termed the BHC or BRAF-HDAC complex, which is required for the repression of neuronal-specific genes. We have shown that the BHC complex is recruited by a neuronal silencer, REST (RE1-silencing transcription factor), and mediates the repression of REST-responsive genes. BHC is a multiprotein complex(More)
Demethylation of histone H3 lysine 4 is carried out by BHC110/LSD1, an enzyme with close homology to monoamine oxidases (MAO). Monoamine oxidase A or B are frequent targets of selective and nonselective small molecular inhibitors used for treatment of depression. Here we show that in contrast to selective monoamine oxidase inhibitors such as pargyline,(More)
We describe five mouse tubulin cloned cDNAs, two (M alpha 1 and M alpha 2) that encode alpha-tubulin and three (M beta 2, M beta 4, and M beta 5) that encode beta-tubulin. The sequence of these clones reveals that each represents a distinct gene product. Within the sequence common to the two alpha-tubulin cDNAs, the encoded amino acids are identical, though(More)
Histone methylation is a posttranslational modification regulating chromatin structure and gene regulation. BHC110/LSD1 was the first histone demethylase described to reverse dimethyl histone H3 lysine 4 (H3K4). Here we show that JARID1d, a JmjC-domain-containing protein, specifically demethylates trimethyl H3K4. Detailed mapping analysis revealed that(More)
Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents for the treatment of solid and hematological malignancies. The precise mechanism by which HDAC inhibitors mediate their effects on tumor cell growth, differentiation, and/or apoptosis is the subject of intense research. Previously we described a family of multiprotein complexes(More)
Histone H3 methylation at Lys27 (H3K27 methylation) is a hallmark of silent chromatin, while H3K4 methylation is associated with active chromatin regions. Here we report that a Drosophila JmjC family member, dUTX, specifically demethylates di- and trimethylated but not monomethylated H3K27. dUTX localization on chromatin correlates with the elongating form(More)
Histone H3 Lys4 (H3K4) is methylated by yeast Set1–COMPASS and its mammalian homolog, the MLL complex. Human JARID1d can demethylate trimethyl-H3K4 (H3K4me3). We identified Drosophila melanogaster little imaginal discs (Lid) as the JARID1d homolog. We report that Lid knockdown using RNA interference results in a specific genome-wide increase in H3K4me3(More)
We investigated plant cell division by testing for the presence and involvement in progress through the division cycle of the protein p34cdc2, a key participant in division control in other eukaryotes. A protein of the same m(r) 34,000 has structural similarity indicated by its reaction with three sorts of antibody raised against (1) cell division-specific(More)