Learn More
Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures–including high strength, high stiffness, low density and structural perfection–could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of(More)
Studying molecular dynamics inside living cells is a major but highly rewarding challenge in cell biology. We present a nanoscale mechanochemical method to deliver fluorescent quantum dots (QDs) into living cells, using a membrane-penetrating nanoneedle. We demonstrate the selective delivery of monodispersed QDs into the cytoplasm and the nucleus of living(More)
We report the development of a three-probe manipulator for handling and characterizing the properties of nanoscopic objects. The manipulator is realized using micromachining and nanofabrication techniques. It is powered using thermal bimetallic actuation principle. We developed nanoscale end-effectors to directly interface with nanoscopic objects. The(More)
Continued progress in the electronics industry depends on downsizing, to a few micrometers, the wire bonds required for wiring integrated chips into circuit boards. We developed an electrodeposition method that exploits the thermodynamic stability of a microscale or nanoscale liquid meniscus to "write" pure copper and platinum three-dimensional structures(More)
We report recent development of a three-probe micromachined nanomanipulator for manipulation and in-situ characterization of nanomaterials in scanning electron microscope (SEM). The nanomanipulator consists of three independent probes having thermal bimetallic actuators and nanoscopic end-effectors. Nanoscale end-effectors with sub-100-nm spacing are(More)
The aqueous extract from Carya cathayensis Sarg. exocarp was centrifuged, filtered, and separated into 11 elution fractions by X-5 macroporous resin chromatography. A phenolic compound, 4,8-dihydroxy-1-tetralone (4,8-DHT) was isolated from the fractions with the strongest phytotoxicity by bioassy-guided fractionation, and investigated for phytotoxicity on(More)
ii ABSTRACT Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics(More)
  • 1