Learn More
BACKGROUND Shiga toxin (stx) genes have been transferred to numerous bacteria, one of which is E. coli O157:H7. It is a common belief that stx gene is transferred by bacteriophages, because stx genes are located on lambdoid prophages in the E. coli O157:H7 genome. Both E. coli O157:H7 and non-pathogenic E. coli are highly enriched in cattle feedlots. We(More)
BACKGROUND Muscle wasting is frequently a result of cancers, AIDS, chronic diseases and aging, which often links to muscle inflammation. Although grape seed extract (GSE) has been widely used as a human dietary supplement for health promotion and disease prevention primarily due to its anti-oxidative and anti-inflammative effects, it is unknown whether GSE(More)
Maternal obesity (MO) predisposes offspring to obesity and type 2 diabetes despite poorly defined mechanisms. Zfp423 is the key transcription factor committing cells to the adipogenic lineage, with exceptionally dense CpG sites in its promoter. We hypothesized that MO enhances adipogenic differentiation during fetal development through inducing epigenetic(More)
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily(More)
Meat animals are unique as experimental models for both lipid metabolism and adipocyte studies because of their direct economic value for animal production. This paper discusses the principles that regulate adipogenesis in major meat animals (beef cattle, dairy cattle, and pigs), the definition of adipose depot-specific regulation of lipid metabolism or(More)
All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal(More)
Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways.(More)
Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for(More)
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity(More)
Obesity and metabolic syndromes are examples whereby excess energy consumption and energy flux disruptions are causative agents of increased fatness. Because other, as yet elucidated, cellular factors may be involved and because potential treatments of these metabolic problems involve systemic agents that are not adipose depot-specific in their actions,(More)