Learn More
Based on the thermo-optic tuning of a polymer waveguide Bragg reflector, we demonstrated a cost-effective tunable wavelength laser for WDM optical communications. The excellent thermo-optic effect of the polymer waveguide enabled direct tuning of the Bragg reflection wavelength by controlling the electrical power on a micro-heater. Wavelength tuning for 32(More)
The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a(More)
Polarization controllers based on polymer waveguide technology are demonstrated by incorporating thermo-optic birefringence modulators (BMs) and thin-film wave plates. Highly birefringent polymer materials are used to increase the efficiency of birefringence modulation in proportion to the heating power. Thin-film quarter-wave plates are fabricated by using(More)
A flexible polymeric Bragg reflector is fabricated for the purpose of demonstrating widely tunable lasers with a compact simple structure. The external feedback of the Bragg reflected light into a superluminescent laser diode produces the lasing of a certain resonance wavelength. The highly elastic polymer device enables the direct tuning of the Bragg(More)
A tunable channel-drop filter as essential component for the wavelength-division-multiplexing optical communication system has been demonstrated, which is based on polymer waveguide Bragg reflectors. For an ordinary Bragg reflector, the filtered signal is reflected toward the input waveguide. Thus an external circulator is required to separate the filtered(More)
To produce a compact low-cost tunable filter required for WDM optical communications, a polymeric Bragg reflection filter with an apodized grating structure is proposed. A high-contrast polymeric waveguide is incorporated in order to obtain high reflectivity from a short Bragg grating. To overcome the bandwidth broadening, an apodized grating with a(More)
Various functional optical devices are integrated on a single chip in order to construct optical current transducers based on polarization rotated reflection interferometry, which consists of polarization maintaining 3-dB couplers, TE-pass polarizers, TE/TM polarization converters, and thermo-optic phase modulators. By virtue of the device integration, the(More)
A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an(More)
We have demonstrated a hybrid Mach-Zehnder optical modulator consisting of a large-core, low-loss fluorinated passive polymer waveguide and an electro-optic (EO) polymer waveguide. The combination exhibits low fiber coupling loss to the passive waveguide and reduced transmission loss because the EO polymer waveguide is used only in the active region. The(More)