Mimi Hashimoto-Sugimoto

Learn More
Stomata are highly specialized organs that consist of pairs of guard cells and regulate gas and water vapor exchange in plants [1-3]. Although early stages of guard cell differentiation have been described [4-10] and were interpreted in analogy to processes of cell type differentiation in animals [11], the downstream development of functional stomatal guard(More)
Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and(More)
Plants control CO2 uptake and water loss by modulating the aperture of stomata located in the epidermis. Stomatal opening is initiated by the activation of H(+)-ATPases in the guard-cell plasma membrane. In contrast to regulation of H(+)-ATPase activity, little is known about the translocation of the guard cell H(+)-ATPase to the plasma membrane. Here we(More)
CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely(More)
The question of whether red light-induced stomatal opening is mediated by a photosynthesis-derived reduction in intercellular [CO2 ] (Ci ) remains controversial and genetic analyses are needed. The Arabidopsis thaliana protein kinase HIGH TEMPERATURE 1 (HT1) is a negative regulator of [CO2 ]-induced stomatal closing and ht1-2 mutant plants do not show(More)
HT1 (HIGH LEAF TEMPERATURE 1) is the first component associated with changes in stomatal aperture in response to CO2 to be isolated by forward genetic screening. The HT1 gene encodes a protein kinase expressed mainly in guard cells. The loss-of-function ht1-1 and ht1-2 mutants in Arabidopsis thaliana have CO2-hypersensitive stomatal closure with concomitant(More)
The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant's gas-exchange capacity. We investigated the stomatal responses to CO2 concentration(More)
The Arabidopsis stomatal complex is composed of a pair of guard cells and surrounding anisocytic subsidiary cells. Subsidiary cells are thought to function as a supplier and receiver of bulk water and ions, and to assist turgor-driven stomatal movement, but the molecular mechanisms are largely unknown. In this work, we studied the dynamic behavior and(More)
Specific cellular components including products of phosphatidylinositol (PI) metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K) and PI3K, were used to investigate stomatal closure in response to CO2,(More)
Stomata are small pores surrounded by guard cells that regulate gas exchange between plants and the atmosphere. Guard cells integrate multiple environmental signals and control the aperture width to ensure appropriate stomatal function for plant survival. Leaf temperature can be used as an indirect indicator of stomatal conductance to environmental signals.(More)
  • 1