Miltos Tsiantis

Learn More
The shoot apical meristem (SAM) is a pluripotent group of cells that gives rise to the aerial parts of higher plants. Class-I KNOTTED1-like homeobox (KNOX) transcription factors promote meristem function partly through repression of biosynthesis of the growth regulator gibberellin (GA). However, regulation of GA activity cannot fully account for KNOX(More)
A key question in biology is how differences in gene function or regulation produce new morphologies during evolution. Here we investigate the genetic basis for differences in leaf form between two closely related plant species, Arabidopsis thaliana and Cardamine hirsuta. We report that in C. hirsuta, class I KNOTTED1-like homeobox (KNOX) proteins are(More)
Knotted1-like homeobox (KNOX) proteins are homeodomain transcription factors that maintain an important pluripotent cell population called the shoot apical meristem, which generates the entire above-ground body of vascular plants. KNOX proteins regulate target genes that control hormone homeostasis in the meristem and interact with another subclass of(More)
Biological shapes are often produced by the iterative generation of repeated units. The mechanistic basis of such iteration is an area of intense investigation. Leaf development in the model plant Arabidopsis is one such example where the repeated generation of leaf margin protrusions, termed serrations, is a key feature of final shape. However, the(More)
BACKGROUND The shoot apical meristem (SAM) is an indeterminate structure that gives rise to the aerial parts of higher plants. Leaves arise from the differentiation of cells at the flanks of the SAM. Current evidence suggests that the precise regulation of KNOTTED1-like homeobox (KNOX) transcription factors is central to the acquisition of leaf versus(More)
Diversity in leaf shape is produced by alterations of the margin: for example, deep dissection leads to leaflet formation and less-pronounced incision results in serrations or lobes. By combining gene silencing and mutant analyses in four distantly related eudicot species, we show that reducing the function of NAM/CUC boundary genes (NO APICAL MERISTEM and(More)
Leaf development in higher plants requires the specification of leaf initials at the flanks of a pluripotent structure termed the shoot apical meristem. In Arabidopsis, this process is facilitated by negative interactions between class I KNOTTED1-like homeobox (KNOX) and ASYMMETRIC LEAVES1 (AS1) transcription factors, such that KNOX proteins are confined to(More)
To facilitate glucocorticoid-inducible transgene expression from the pOp promoter in Arabidopsis the ligand-binding domain of a rat glucocorticoid receptor (GR LBD) was fused to the amino terminus of the synthetic transcription factor LhG4 to generate LhGR-N. Fusions bearing the GR LBD at other positions in LhG4 exhibited incomplete repression or(More)
Leaves of higher plants develop in a sequential manner from the shoot apical meristem. Previously it was determined that perturbed leaf development in maize rough sheath2 (rs2) mutant plants results from ectopic expression of knotted1-like (knox) homeobox genes. Here, the rs2 gene sequence was found to be similar to the Antirrhinum PHANTASTICA (PHAN) gene(More)
The developmental basis for the generation of divergent leaf forms is largely unknown. Here we investigate this problem by studying processes that distinguish development of two related species: Arabidopsis thaliana, which has simple leaves, and Cardamine hirsuta, which has dissected leaves with individual leaflets. Using genetics, expression studies and(More)