Milt Teitler

Learn More
Clozapine is the prototype atypical antipsychotic drug, producing little or no extrapyramidal side effects, while improving negative symptoms of psychosis. Clozapine's high affinity for serotonin receptors has been hypothesized to confer the unique antipsychotic properties of this drug. Recently, we demonstrated that both typical and atypical antipsychotic(More)
The 5-HT2 (serotonin) receptor has traditionally been labeled with antagonist radioligands such as [3H]ketanserin and [3H]spiperone, which label both agonist high-affinity (guanyl nucleotide-sensitive) and agonist low-affinity (guanyl nucleotide-insensitive) states of this receptor. The hallucinogen 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) is an(More)
The ternary complex model as applied to G-protein coupled receptors (GPCR) predicts that an agonist binds with low affinity (K(L)) to the free receptor (R), leading to an agonist/receptor/G-protein complex. This ternary complex displays high agonist affinity (K(H)), resulting in signal transduction. Classical dogma states that the ratio K(L)/K(H) predicts(More)
Ketanserin is the prototypic 5-HT2 serotonin antagonist; although it has been an important tool for the study of serotonin pharmacology, it has had relatively little impact on drug design because remarkably little is known about its structure-affinity relationships. Furthermore, ketanserin also binds at 5-HT1C receptors and even less is known about the(More)
Evidence from studies with phenylisopropylamine hallucinogens indicates that the 5HT2A receptor is the likely target for the initiation of events leading to hallucinogenic activity associated with LSD and related drugs. Recently, lisuride (a purported non-hallucinogenic congener of LSD) was reported to be a potent antagonist at the 5HT2C receptor and an(More)
Assays using radioligands were used to assess the actions of ibogaine and harmaline on various receptor types. Ibogaine congeners showed affinity for opiate receptors whereas harmaline and harmine did not. The Ki for coronaridine was 2.0 microM at mu-opiate receptors. The Kis for coronaridine and tabernanthine at the delta-opiate receptors were 8.1 and 3.1(More)
Summary. The ratio between the affinities of beta-blockers for the beta2- and beta1-receptors is often used to predict the cardioselectivity and the potential consequences of blocking beta2-receptor–mediated effects of adrenergic receptor blockers. These ratios have been traditionally determined using various in vitro models of beta2 and beta1-receptor(More)
GPCRs are a major family of homologous proteins and are key mediators of the effects of numerous endogenous neurotransmitters, hormones, cytokines, therapeutic drugs, and drugs-of-abuse. Despite the enormous amount of research on the pharmacological and biochemical properties of GPCRs, the question as to whether they exist as monomers, dimers, or higher(More)
Radioligand-binding studies were performed to ascertain the actions of noribogaine, a suspected metabolite of ibogaine, on opioid receptors. Consistent with previous results, ibogaine showed highest affinity for kappa opioid receptors (Ki = 3.77 +/- 0.81 microM), less affinity for mu receptors (Ki = 11.04 +/- 0.66 microM) and no affinity for delta receptors(More)
Arylpiperazines are nonselective agents that bind at 5-HT3 serotonin receptors with moderate to high affinity, whereas 1-phenylbiguanide is a low-affinity but more selective 5-HT3 agonist. In an attempt to enhance the affinity of the latter agent, and working with the assumption that similarities might exist between the binding of the two types of agents,(More)