Learn More
Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion.(More)
This work deals with the efficient and accurate modeling of fluorescence in the context of stochastic Monte Carlo methods for which we propose a novel multiscale method. As in other approaches of this category, the transport theory is employed to describe the physics. The new framework was successfully applied for a quantitative assessment of halftone(More)
Monte Carlo simulations were performed in order to obtain reflectance measurements from phantoms typically used in biomedical optics when either unpolarized or circularly polarized incident light is used. Phantoms contain spherical targets of different diameters, placed at different depths, with higher absorption than the surrounding medium, which are(More)
This paper deals with an efficient and accurate simulation algorithm to solve the vector Boltzmann equation for polarized light transport in scattering media. The approach is based on a stencil method, which was previously developed for unpolarized light scattering and proved to be much more efficient (speedup factors of up to 10 were reported) than the(More)
The objective of this work is to predict the deviations between spectral measurements obtained by different devices for halftone prints. To describe the physics, the transport theory is considered, and to accurately solve the governing equations for arbitrary phase functions, a stochastic Monte Carlo method is employed. Recently, a stencil approach was(More)
In this paper a new approach to improve contrast in optical subsurface imaging is presented. The method is based on time-resolved reflectance and selection of ballistic photons using polarization gating. Numerical studies with a statistical Monte Carlo method also reveal that weakly scattered diffuse photons can be eliminated by employing a small aperture(More)
Birefringent media, like biological tissues, are usually assumed to be uniaxial. For biological tissues, the influence of linear birefringence on the scattering phase function is assumed to be neglectable. In order to examine this, a numerical study of the influence of linear birefringence on the scattering phase function and the resulting backscattering(More)
  • 1