Milos R Filipovic

Learn More
Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is(More)
BACKGROUND & AIMS The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of(More)
Dihydrogen sulfide recently emerged as a biological signaling molecule with important physiological roles and significant pharmacological potential. Chemically plausible explanations for its mechanisms of action have remained elusive, however. Here, we report that H(2)S reacts with S-nitrosothiols to form thionitrous acid (HSNO), the smallest(More)
Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure(More)
Protein S-sulfhydration (forming -S-SH adducts from cysteine residues) is a newly defined oxidative posttranslational modification and plays an important role in H2 S-mediated signaling pathways. In this study we report the first selective, "tag-switch" method which can directly label protein S-sulfhydrated residues by forming stable thioether conjugates.(More)
Hydrogen sulfide (H2S) has emerged as a signalling molecule capable of regulating several important physiological functions such as blood pressure, neurotransmission and inflammation. The mechanisms behind these effects are still largely elusive and oxidative posttranslational modification of cysteine residues (protein persulfidation or S-sulfhydration) has(More)
SIGNIFICANCE In the cells' nuclei, high-mobility group box protein 1 (HMGB1) is a nonhistone chromatin-binding protein involved in the regulation of transcription. Extracellularly, HMGB1 acts as a danger molecule with properties of a proinflammatory cytokine. It can be actively secreted from myeloid cells or passively leak from any type of injured, necrotic(More)
Hydrogen sulfide (H2S) elicits pleiotropic physiological effects ranging from modulation of cardiovascular to CNS functions. A dominant method for transmission of sulfide-based signals is via posttranslational modification of reactive cysteine thiols to persulfides. However, the source of the persulfide donor and whether its relationship to H2S is as a(More)
Thermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally(More)