Milos Ljubisavljevic

Learn More
It has been shown that the primary and secondary somatosensory cortex, as well as the supplementary motor area (SMA), are involved in central processing of proprioceptive signals during passive and active arm movements. However, it is not clear whether different cortical areas are involved in processing of different proprioceptive inputs (skin, joint,(More)
Changes in silent period (SP) duration following transcranial magnetic stimulation (TMS) set at 20% above the motor threshold were studied in six subjects suffering from writer's cramp, while performing dystonic movement and during voluntary isometric contraction of the muscles mostly involved in the dystonic movement. Dependency of SP duration on the(More)
Intramuscular injection of hypertonic saline (HS) is a procedure widely adopted to experimentally induce deep muscle pain in humans. This study was undertaken to test whether intramuscular injections of HS (5%) influence the activity of primary and secondary muscle spindle afferents (MSAs) from homonymous as well as heteronymous muscles. The experiments(More)
Previous reports showed that sympathetic stimulation affects the activity of muscle spindle afferents (MSAs). The aim of the present work is to study the characteristics of sympathetic modulation of MSA response to stretch: (i) on the dynamic and static components of the stretch response, and (ii) on group Ia and II MSAs to evaluate potentially different(More)
It has been well established that repetitive motor performance and skill learning alter the functional organization of human corticomotoneuronal system. Over the past decade, transcranial magnetic stimulation (TMS) has helped to demonstrate motor practice and learning-related changes in corticomotoneuronal excitability and representational plasticity. It(More)
A positron emission tomography imaging study was performed on 16 healthy volunteers to reveal changes in cortical activation during acute muscle pain induced by intra-muscular injection of hypertonic saline into the left triceps brachii muscle. Changes in regional cerebral blood flow (rCBF) were measured with the use of [(15)O] labelled water during(More)
1. Changes in discharge rate of thirty-one fusimotor neurones to triceps surae muscles during long-lasting, fatiguing contractions of these muscles were studied in decerebrate cats. Discharges of fusimotor neurones were recorded from the nerve filaments. Muscle contractions were elicited by electrical stimulation of either the muscle nerves (twenty-one(More)
Changes in discharge rate of 21 fusimotor neurons to medial gastrocnemius muscle during long-lasting fatiguing contractions of lateral gastrocnemius and soleus muscles were recorded in decerebrate cats with innervation of the same hindlimb preserved. Both the spontaneous activity and reflex responses of fusimotor neurons differed from those found previously(More)
The organization of the cutaneous afferent influence on the discharge of gamma-motoneurones has been investigated in the decerebrated, spinal cat. gamma-Motoneurone discharges were recorded from cut nerve filaments. Time and frequency domain analyses were used to reveal the strength of coupling between gamma-motoneurone discharge and cutaneous afferents(More)
This study showed that fatigue of the ipsilateral medial gastrocnemius muscle caused a clear-cut reduction in the ability of ensembles of primary muscle spindle afferents from the lateral gastrocnemius muscle to discriminate between muscle stretches of varying amplitude. The results were probably caused by reflex-mediated effects from chemosensitive group(More)