Learn More
The role of microglia recruited from bone marrow (BM) into the CNS during the progression of Alzheimer's disease (AD) is poorly understood. To investigate whether beta-amyloid (Abeta) associated microglia are derived from blood monocytes, we transplanted BM cells from enhanced green fluorescent protein expressing mice into young or old transgenic AD mice(More)
Although microglial cells are thought to play a beneficial role in the regeneration and plasticity of the central nervous system (CNS), recent studies have indicated that at least some molecules released by microglia may be harmful in acute brain insults and neurodegenerative diseases. Therefore, the pathways mediating the synthesis and release of these(More)
Progressive memory impairment, beta-amyloid (Abeta) plaques associated with local inflammation, neurofibrillary tangles, and loss of neurons in selective brain areas are hallmarks of Alzheimer's disease (AD). Although beta-amyloid precursor protein (APP) and Abeta have a central role in the etiology of AD, it is not clear which forms of APP or Abeta are(More)
We have previously shown that apolipoprotein E (Apoe) promotes the formation of amyloid in brain and that astrocyte-specific expression of APOE markedly affects the deposition of amyloid-beta peptides (Abeta) in a mouse model of Alzheimer disease. Given the capacity of astrocytes to degrade Abeta, we investigated the potential role of Apoe in this(More)
Excitotoxic neuronal death contributes to many neurological disorders, and involves calcium influx and stress-activated protein kinases (SAPKs) such as p38alpha. There is indirect evidence that the small Rho-family GTPases Rac and cdc42 are involved in neuronal death subsequent to the withdrawal of nerve growth factor (NGF), whereas Rho is involved in the(More)
Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. The neuropathological hallmarks include extracellular senile plaques consisting of deposited beta-amyloid (Abeta) peptides and intraneuronal neurofibrillary tangles. Neuroinflammation and activation of astrocytes are also well-established features of AD neuropathology;(More)
Memory impairment progressing to dementia is the main clinical symptom of Alzheimer's disease (AD). AD is characterized histologically by the presence of beta-amyloid (Abeta) plaques and neurofibrillary tangles in specific brain regions. Although Abeta derived from the Abeta precursor protein (beta-APP) is believed to play a central etiological role in AD,(More)
The amyloid hypothesis of Alzheimer's disease (AD) postulates that amyloid-beta (Abeta) deposition and neurotoxicity play a causative role in AD; oxidative injury is thought to be central in the pathogenesis. An endogenous defense system against oxidative stress is induced by binding of the transcription factor nuclear factor E2-related factor 2 (Nrf2) to(More)
BACKGROUND Purified intravenous immunoglobulin (IVIG) obtained from the plasma of healthy humans is indicated for the treatment of primary immunodeficiency disorders associated with defects in humoral immunity. IVIG contains naturally occurring auto-antibodies, including antibodies (Abs) against β-amyloid (Aβ) peptides accumulating in the brains of(More)
Apolipoprotein E (apoE) alleles are important genetic risk factors for Alzheimer's disease (AD), with the epsilon4 allele increasing and the epsilon2 allele decreasing risk for developing AD. ApoE has been shown to influence brain amyloid-beta peptide (Abeta) and amyloid burden, both in humans and in transgenic mice. Here we show that direct intracerebral(More)