Learn More
Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain.(More)
The dopamine transporter (DAT) is a transmembrane protein belonging to the family of neurotransmitter:sodium symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N- and C-terminal domains(More)
Cell membranes possess a complex three-dimensional architecture, including nonrandom lipid lateral organization within the plane of a bilayer leaflet, and compositional asymmetry between the two leaflets. As a result, delineating the membrane structure-function relationship has been a highly challenging task. Even in simplified model systems, the(More)
The first step in topological data analysis is often the construction of a simpli-cial complex. This complex approximates the lost topology of a sampled point set. Current techniques often assume that the input is embedded in a metric – often Euclidean – space, and make significant use of the underlying geometry for efficient computation. Consequently,(More)
We have recently developed a novel computational methodology (termed RSF for Real-Space Fluctuations) to quantify the bending rigidity and tilt modulus of lipid membranes from real-space analysis of fluctuations in the tilt and splay degrees of freedom as sampled in molecular dynamics (MD) simulations. In this article, we present a comprehensive study that(More)
An objective structure is a collection of distinct points having identical physical environments. Such structures are produced by applying a discrete subgroup of an isometry group to a finite set of points. Here the objective structures are generated by the nanotube group and their dynamics are simulated using the Lennard-Jones potential and the velocity(More)
A protein's function is determined by the wide range of motions exhibited by its 3D structure. However, current experimental techniques are not able to reliably provide the level of detail required for elucidating the exact mechanisms of protein motion essential for effective drug screening and design. Computational tools are instrumental in the study of(More)
  • 1