Learn More
Cultivated peanut is an allotetraploid with an AB-genome. In order to learn more of the genomic structure of peanut, we characterized and studied the evolution of a retrotransposon originally isolated from a resistance gene analog (RGA)-containing bacterial artificial chromosome (BAC) clone. It is a moderate copy number Ty1-copia retrotransposon from the(More)
BACKGROUND AND AIMS Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the(More)
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of(More)
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared(More)
• Plant genomes contain numerous disease resistance genes (R genes) that play roles in defense against pathogens. Scarcity of genetic polymorphism makes peanut (Arachis hypogaea) especially vulnerable to a wide variety of pathogens. • Here, we isolated and characterized peanut bacterial artificial chromosomes (BACs) containing a high density of R genes.(More)
MicroRNAs (miRNAs) are small regulatory RNAs that play a defining role in post-transcriptional gene silencing of eukaryotes by either mRNA cleavage or translational inhibition. Plant miRNAs have been implicated in innumerable growth and developmental processes that extend beyond their ability to respond to biotic and abiotic stresses. Active in an(More)
We used a comparative genomics approach to investigate the evolution of a complex nucleotide-binding (NB)-leucine-rich repeat (LRR) gene cluster found in soybean (Glycine max) and common bean (Phaseolus vulgaris) that is associated with several disease resistance (R) genes of known function, including Rpg1b (for Resistance to Pseudomonas glycinea1b), an R(More)
Information on multiple synteny between plants and/or within a plant is key information to understand genome evolution. In addition, visualization of multiple synteny is helpful in interpreting evolution. So far, some web applications have been developed to determine and visualize multiple homology regions at once. However, the applications are not fully(More)
Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a(More)
Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild(More)