Miles S. Okino

Learn More
We have developed a comprehensive, Bayesian, PBPK model-based analysis of the population toxicokinetics of trichloroethylene (TCE) and its metabolites in mice, rats, and humans, considering a wider range of physiological, chemical, in vitro, and in vivo data than any previously published analysis of TCE. The toxicokinetics of the "population average," its(More)
Chlorpyrifos is a common agricultural insecticide and has been used residentially in the United States until the year 2000 when this use was restricted by the U.S. Environmental Protection Agency (U.S. EPA). A chlorpyrifos metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) has been found in urine samples collected during exposure field studies. In this work, we(More)
Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term(More)
Biomonitoring Equivalents (BEs) are defined as the concentration of a chemical (or metabolite) in a biological medium (blood, urine, human milk, etc.) consistent with defined exposure guidance values or toxicity criteria including reference doses and reference concentrations (RfD and RfCs), minimal risk levels (MRLs), or tolerable daily intakes (TDIs)(More)
A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical(More)
Biomonitoring Equivalents (BEs) are screening tools for interpreting biomonitoring data. However, the development of BEs brings to the public a relatively novel concept in the field of health risk assessment and presents new challenges for environmental risk communication. This paper provides guidance on methods for conveying information to the general(More)
Much progress has been made in understanding the complex pharmacokinetics of trichloroethylene (TCE) . Qualitatively, it is clear that TCE is metabolized to multiple metabolites either locally or into systemic circulation. Many of these metabolites are thought to have toxicologic importance. In addition, efforts to develop physiologically based(More)
This study examines the use of physiologically based pharmacokinetic (PBPK) models for inferring exposure when the number of biomarker observations per individual is limited, as commonly occurs in population exposure surveys. The trade-off between sampling multiple biomarkers at a specific time versus fewer biomarkers at multiple time points was(More)
Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methylcarbamate), a broad spectrum N-methyl carbamate insecticide, and its metabolite, 3-hydroxycarbofuran, exert their toxicity by reversibly inhibiting acetylcholinesterase (AChE). To characterize AChE inhibition from carbofuran exposure, a physiologically based pharmacokinetic/pharmacodynamic(More)
Our interest in providing parameters for the development of quantitative structure physiologically based pharmacokinetic/pharmacodynamic (QSPBPK/PD) models for assessing health risks to carbamates (USEPA 2005) comes from earlier work with organophosphorus (OP) insecticides (Knaak et al. 2004). Parameters specific to each carbamate are needed in the(More)