Miles Pebody

Learn More
We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important(More)
The action of an agent with goal autonomy will be driven by goals generated with reference to its own beliefs and desires. This ability is essential for agents that are required to act in their own interests in a domain that is not entirely predictable. At any time, the situation may warrant the generation of new goals. However, it is not always the case(More)
The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre.(More)
Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese(More)
Advanced AUV’s, particularly those capable of long duration missions, need increasing amounts of autonomy in order to carry out sophisticated missions without requiring constant support from a ship. One important aspect of this autonomy is fault detection and execution monitoring. In this paper we describe the application of the Livingstone 2 diagnosis(More)
In March 2010, the Autosub6000 AUV embarked on a cruise to discover, locate and map hydrothermal vent sites in an active spreading centre, the Cayman trough in the Caribbean sea. The environment provided the challenge of steep and rugged terrain together with deep water (in places greater than 5000 m). Autosub6000 is a flight class, hydrodynamically shaped(More)
This is a progress report on applying formal methods in the context of building an automated diagnosis and recovery system for Autosub 6000, an Autonomous Underwater Vehicle (AUV). The diagnosis task involves building abstract models of the control system of the AUV. The diagnosis engine is based on Livingstone 2, a model-based diagnoser originally built(More)
Advanced AUVs that are capable of long duration missions are becoming increasingly common. However, making the vehicles reliable is a significant challenge, and fault detection has an important role to play in achieving this. To enhance the state of the art we present the data of a selection of Autosub 6000 missions. The data is given in DXC format with(More)
Modern systems frequently consist of a complex mixture of hardware and software. Model-based diagnosis typically assumes that the effects of the software can be summarised by the commands sent to the hardware and thus the software can be left out of the model. In our effort to build a diagnosis system for an autonomous underwater vehicle (AUV) we have an(More)
  • 1