Miles A Miller

Learn More
Matrix metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) are two related protease families that play key roles in matrix remodeling and growth factor ligand shedding. Directly ascertaining the proteolytic activities of particular MMPs and ADAMs in physiological environments in a non-invasive, real-time, multiplex manner remains a(More)
The relationship between drug resistance, changes in signaling, and emergence of an invasive phenotype is well appreciated, but the underlying mechanisms are not well understood. Using machine learning analysis applied to the Cancer Cell Line Encyclopedia database, we identified expression of AXL, the gene that encodes the epithelial-to-mesenchymal(More)
Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis.(More)
Ectodomain cleavage of cell-surface proteins by A disintegrin and metalloproteinases (ADAMs) is highly regulated, and its dysregulation has been linked to many diseases. ADAM10 and ADAM17 cleave most disease-relevant substrates. Broad-spectrum metalloprotease inhibitors have failed clinically, and targeting the cleavage of a specific substrate has remained(More)
Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a(More)
UNLABELLED Kinase inhibitor resistance often involves upregulation of poorly understood "bypass" signaling pathways. Here, we show that extracellular proteomic adaptation is one path to bypass signaling and drug resistance. Proteolytic shedding of surface receptors, which can provide negative feedback on signaling activity, is blocked by kinase inhibitor(More)
Pancreatic ductal adenocarcinoma (PDAC) has a grim prognosis with <5% survivors after 5 years. High expression levels of ADAM8, a metalloprotease disintegrin, are correlated with poor clinical outcome. We show that ADAM8 expression is associated with increased migration and invasiveness of PDAC cells caused by activation of ERK1/2 and higher MMP activities.(More)
A Disintegrin and Metalloproteinases (ADAMs) are the principal enzymes for shedding receptor tyrosine kinase (RTK) ectodomains and ligands from the cell surface. Multiple layers of activity regulation, feedback, and catalytic promiscuity impede our understanding of context-dependent ADAM "sheddase" function and our ability to predictably target that(More)
Therapeutic nanoparticles (TNPs) have shown heterogeneous responses in human clinical trials, raising questions of whether imaging should be used to identify patients with a higher likelihood of NP accumulation and thus therapeutic response. Despite extensive debate about the enhanced permeability and retention (EPR) effect in tumors, it is increasingly(More)
Secreted active proteases, from families of enzymes such as matrix metalloproteinases (MMPs) and ADAMs (a disintegrin and metalloproteinases), participate in diverse pathological processes. To simultaneously measure multiple specific protease activities, a series of parallel enzyme reactions combined with a series of inhibitor analyses for proteolytic(More)