Milena Grossi

Learn More
Skeletal myogenesis, like hematopoiesis, occurs in successive developmental stages that involve different cell populations and expression of different genes. We show here that the transcription factor nuclear factor one X (Nfix), whose expression is activated by Pax7 in fetal muscle, in turn activates the transcription of fetal specific genes such as MCK(More)
Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and(More)
miR-206, a member of the so-called myomiR family, is largely acknowledged as a specific, positive regulator of skeletal muscle differentiation. A growing body of evidence also suggests a tumor suppressor function for miR-206, as it is frequently downregulated in various types of cancers. In this study, we show that miR-206 directly targets cyclin D1 and(More)
It is widely acknowledged that cultured myoblasts can not differentiate at very low density. Here we analyzed the mechanism through which cell density influences myogenic differentiation in vitro. By comparing the behavior of C2C12 myoblasts at opposite cell densities, we found that, when cells are sparse, failure to undergo terminal differentiation is(More)
In order to take advantage of cell replication machinery, viruses have evolved complex strategies to override cell cycle checkpoints and force host cells into S phase. To do so, virus products must interfere not only with the basal cell cycle regulators, such as pRb or Mad2, but also with the main surveillance pathways such as those controlled by p53 and(More)
We have analyzed mixed cultures of normal mammalian fibroblastic cells and transformed quail myoblasts to investigate whether the presence of an excess of normal cells could suppress the phenotype of transformed quail cells. In such mixed cultures, only v-myc-transformed cells were growth-arrested, whereas v-src-transformed myoblasts were essentially(More)
Unestablished quail myoblasts were infected with a retroviral vector encoding the oncogenic form of H-Ras in order to investigate the mechanism by which this oncoprotein interferes with terminal differentiation. Primary quail myogenic cells exhibit the simultaneous expression of the muscle regulatory genes myf-5, MyoD and myogenin in proliferative(More)
Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery,(More)
Quiescent mammalian fibroblasts can be induced to reenter the cell cycle by growth factors and oncoproteins. We studied the pathway(s) through which v-Src, the oncogenic tyrosine kinase encoded by the v-src oncogene of Rous sarcoma virus, forces serum-starved NIH3T3 cells to enter S-phase. To this purpose, we isolated and characterized a polyclonal(More)
Infection of replicating quail myoblasts with avian sarcoma virus 17 (ASV-17) results in the inhibition of terminal differentiation into multinucleated myotubes and in the acquisition of anchorage-independent proliferation. Expression of v-jun, the ASV-17 oncogene, concomitantly leads to the accumulation of the gag-jun polyprotein P65 in the nucleus and to(More)