Mildred S. Dresselhaus

Learn More
Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure(More)
Wrapping of carbon nanotubes (CNTs) by single-stranded DNA (ssDNA) was found to be sequence-dependent. A systematic search of the ssDNA library selected a sequence d(GT)n, n = 10 to 45 that self-assembles into a helical structure around individual nanotubes in such a way that the electrostatics of the DNA-CNT hybrid depends on tube diameter and electronic(More)
The goal of this chapter is to review the importance of excitons to single-wall carbon nanotube (SWNT) optics. We have developed the presentation for both researchers in the SWNT field who want to learn more about the unusual aspects of SWNT exciton photophysics and researchers more knowledgeable about the physics of excitons, but not about SWNT physics.(More)
Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor.(More)
The creation of a sustainable energy generation, storage, and distribution infrastructure represents a global grand challenge that requires massive transnational investments in the research and development of energy technologies that will provide the amount of energy needed on a sufficient scale and timeframe with minimal impact on the environment and have(More)
Single-walled carbon nanotubes (SWNTs) possess an appealing array of physical properties which give them great potential for a growing number of technological applications. 1,2 Understanding how to control the synthesis of SWNTs is vital in order to deterministi-cally integrate such nanostructures into various technologies. To date, the most versatile(More)
Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main(More)
Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects(More)
Photoluminescence (PL) properties of single-layer MoS2 are indicated to have strong correlations with the surrounding dielectric environment. Blue shifts of up to 40 meV of exciton or trion PL peaks were observed as a function of the dielectric constant of the environment. These results can be explained by the dielectric screening effect of the Coulomb(More)