Learn More
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals,(More)
CHARMM (Chemistry at Harvard Macromolecular Mechanics) is a program that is widely used to model and simulate macromolecular systems. CHARMM has been parallelized by using the CHAOS runtime support library on distributed memory architectures. This implementation distributes both data and computations over processors. This data-parallel strategy should make(More)
The catalytic reduction of D-glyceraldehyde to glycerol by aldose reductase has been investigated with the combined potentials of quantum mechanics (QM) and molecular mechanics (MM) to resolve the question of whether Tyr48 or His110 serves as the proton donor during catalysis. Site directed mutagenesis studies favor Tyr48 as the proton donor while the(More)
A number of inexpensive computers were benchmarked with the ab initio program Gaussian 94, using both small standard test jobs and larger density functional (DFT) calculations. Several varieties of Pentium (x86) and Alpha CPU based systems were tested. Most of them were running under the open source code operating system Linux. They were compared with(More)
The synthesis of Eschericha coli colicins is lethal to the producing cell and is repressed during normal growth by the LexA transcription factor, which is the master repressor of the SOS system for repair of DNA damage. Following DNA damage, LexA is inactivated and SOS repair genes are induced immediately, but colicin production is delayed and induced only(More)
In the absence of DNA damage the LexA protein represses the bacterial SOS system. We performed molecular dynamic simulations of two LexA dimers bound to operators. Our model predicted that rotation of the LexA DNA binding domain, with respect to the dimerised C-terminal domain, is required for selective DNA binding. To confirm the model, double and(More)
A hybrid quantum mechanical/molecular mechanical (QM/MM) potential energy function with Hartree-Fock, density functional theory (DFT), and post-HF (RIMP2, MP2, CCSD) capability has been implemented in the CHARMM and Q-Chem software packages. In addition, we have modified CHARMM and Q-Chem to take advantage of the newly introduced replica path and the nudged(More)
Molecular dynamics (MD) and molecular docking are commonly used to study molecular interactions in drug discovery. Most docking approaches consider proteins as rigid, which can decrease the accuracy of predicted docked poses. Therefore MD simulations can be used prior to docking to add flexibility to proteins. We evaluated the contribution of using MD(More)
A new web portal for the CHARMM macromolecular modeling package, CHARMMing (CHARMM interface and graphics, http://www.charmming.org), is presented. This tool provides a user-friendly interface for the preparation, submission, monitoring, and visualization of molecular simulations (i.e., energy minimization, solvation, and dynamics). The infrastructure used(More)
Rational design is applied in the discovery of novel lead drugs. Its rapid development is mainly attributed to the tremendous advancements in the computer science, statistics, molecular biology, biophysics, biochemistry, medicinal chemistry, pharmacokinetics and pharmacodynamics experienced in the last few decades. The promising feature that characterizes(More)