Learn More
Magnetic resonance spectroscopic imaging (MRSI) involves a huge number of spectra to be processed and analyzed. Several tools enabling MRSI data processing have been developed and widely used. However, the processing programs primarily focus on sophisticated spectra processing and offer limited support for the analysis of the calculated spectroscopic maps.(More)
Our study followed the changes in thalamic nuclei metabolism, hindlimb sensitivity to thermal stimulation, and locomotor function after spinal cord injury (SCI). MR spectroscopy (MRS) was used to examine the thalamic nuclei of rats 1 day before and 1, 3, 6, and 15 days after SCI or sham surgery. All animals were tested before MRS measurements for motor(More)
Emerging clinical studies of treating brain and spinal cord injury (SCI) with autologous adult stem cells led us to compare the effect of an intravenous injection of mesenchymal stem cells (MSCs), an injection of a freshly prepared mononuclear fraction of bone marrow cells (BMCs) or bone marrow cell mobilization induced by granulocyte colony stimulating(More)
Bone marrow stromal cells (MSCs) are pluripotent progenitor cells that have the capacity to migrate toward lesions and induce or facilitate site-dependent differentiation in response to environmental signals. In animals with a cortical photochemical lesion, the fate of rat MSCs colabeled with magnetic iron-oxide nanoparticles (Endorem) and bromodeoxyuridine(More)
The diffusion parameters in rat cortex were studied 3-35 days following a cortical stab wound, using diffusion-weighted MR to determine the apparent diffusion coefficient of water (ADC(W)) in the tissue, and the real-time iontophoretic tetramethylammonium (TMA) method to measure the extracellular space (ECS) diffusion parameters: ECS volume fraction alpha(More)
Diffusion parameters of the extracellular space (ECS) are changed in many brain pathologies, disturbing synaptic as well as extrasynaptic "volume" transmission, which is based on the diffusion of neuroactive substances in the ECS. Amyloid deposition, neuronal loss, and disturbed synaptic transmission are considered to be the main causes of Alzheimer's(More)
Nuclear magnetic resonance (MR) imaging provides a noninvasive method for studying the fate of transplanted cells in vivo. We studied, in animals with a cortical photochemical lesion or with a balloon-induced spinal cord compression lesion, the fate of implanted rat bone marrow stromal cells (MSCs) and mouse embryonic stem cells (ESCs) labeled with(More)
OBJECT The goals of the study were to determine at what dosage and after what interval impairment of hippocampal function occurs after Leksell gamma knife radiosurgery (GKS) of the rat hippocampus and to assess the associated structural changes. METHODS Long-Evans rats were irradiated with maximum doses of 25, 50, 75, 100, and 150 Gy, and four 4-mm(More)
Proton MR spectroscopy was used to observe long-term post-irradiation metabolic changes in epileptogenic tissue and in the contralateral parts of the brain which are not available with conventional imaging methods. We studied these changes in the temporal lobe in six patients, following radiosurgery on the amygdala and hippocampus. (1)H MR spectroscopy at(More)
In humans, aging is accompanied by the deterioration of the hearing function--presbycusis. The major etiology for presbycusis is the loss of hair cells in the inner ear; less well known are changes in the central auditory system. Therefore, we used 1H magnetic resonance spectroscopy at 3T tomograph to examine metabolite levels in the auditory cortex of(More)