Milagros Medina

Learn More
Paired helical filaments isolated from the brains of patients with Alzheimer's disease are composed of a major protein component, the microtubule-associated protein termed tau, together with other nonprotein components, including heparan, a glycosaminoglycan, the more extensively sulfated form of which is heparin. As some of these nonprotein components may(More)
Aryl-alcohol oxidase (AAO) is a FAD-containing enzyme in the GMC (glucose-methanol-choline oxidase) family of oxidoreductases. AAO participates in fungal degradation of lignin, a process of high ecological and biotechnological relevance, by providing the hydrogen peroxide required by ligninolytic peroxidases. In the Pleurotus species, this peroxide is(More)
The toxicity of 2,4,6-trinitrotoluene (TNT), a widespread environmental contaminant, is exerted through its enzymatic redox cycling and/or covalent binding of its reduction products to proteins and DNA. In this study, we examined the possibility of another cytotoxicity mechanism of the amino- and hydroxylamino metabolites of TNT, their flavoenzyme-catalyzed(More)
Two transient charge-transfer complexes (CTC) form prior and upon hydride transfer (HT) in the reversible reaction of the FAD-dependent ferredoxin-NADP+ reductase (FNR) with NADP+/H, FNR(ox)-NADPH (CTC-1), and FNR(rd)-NADP+ (CTC-2). Spectral properties of both CTCs, as well as the corresponding interconversion HT rates, are here reported for several(More)
Tau Isolated from paired helical filaments, aberrant structures that appear in Alzheimer disease (AD) patients' brains, show at least two posttranslational modifications: phosphorylation (Grundke-Iqbal et al., 1986; Ihara et al., 1986) and glycation (Ledesma et al., 1994; Yan et al., 1994). To test whether these modifications could affect the capacity of(More)
Tau cDNAs from each of the six human isoforms were transfected into COS- 1 cells and, in every case, more than one peptide was observed. The diversity of expressed isoforms was due to different levels of tau phosphorylation. Tau phosphorylation results in a decrease of the protein electrophoretic mobility. The major contribution to this mobility shift is(More)
Spectral and catalytic properties of the flavoenzyme AAO (aryl-alcohol oxidase) from Pleurotus eryngii were investigated using recombinant enzyme. Unlike most flavoprotein oxidases, AAO does not thermodynamically stabilize a flavin semiquinone radical and forms no sulphite adduct. AAO catalyses the oxidative dehydrogenation of a wide range of unsaturated(More)
The CYP450 from Bacillus megaterium (BmCYP106A2) catalyzes the 15beta-hydroxylation of several steroids and also synthesizes mono-hydroxylated 9alpha- and 11alpha-OH-progesterone. This study reports on the ability of BmCYP106A2 to be efficiently reduced by the photosynthetic flavodoxin and, particularly, ferredoxin electron carriers from the cyanobacterium(More)
This minireview covers the research carried out in recent years into different aspects of the function of the flavoproteins involved in cyanobacterial photosynthetic electron transfer from photosystem I to NADP(+), flavodoxin and ferredoxin-NADP(+) reductase. Interactions that stabilize protein-flavin complexes and tailor the midpoint potentials in these(More)
The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyses the production of NADPH in photosynthesis. The three-dimensional structure of FNR presents two distinct domains, one for binding of the FAD prosthetic group and the other for NADP+ binding. In spite of extensive experiments and different crystallographic approaches, many aspects about how the NADP+(More)