Milad Lankarany

Learn More
Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating(More)
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad(More)
The prodigious capacity of our brain to process information relies on efficient neural coding strategies. In engineered systems, bandwidth is often increased through multiplexing-multiple signals are simultaneously , yet independently, transmitted through a single communication channel. We have proposed previously that neural systems might implement the(More)
Interaction of the excitatory and inhibitory synaptic inputs constructs the shape of the receptive fields and can elucidate the synaptic mechanism underlying the functional activities of neurons. Estimating trial-to-trial excitatory and inhibitory synaptic conductance from noisy observation of membrane potential or input current can reveal drivers of(More)
  • 1