Mikolaj Feliks

  • Citations Per Year
Learn More
4-Hydroxyphenylacetate decarboxylase is a [4Fe-4S] cluster containing glycyl radical enzyme proposed to use a glycyl/thiyl radical dyad to catalyze the last step of tyrosine fermentation in clostridia. The decarboxylation product p-cresol (4-methylphenol) is a virulence factor of the human pathogen Clostridium difficile . Here we describe the crystal(More)
A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent(More)
Oximes (especially oximate anions) are used as potential reactivators of OP-inhibited AChE due to their unique alpha-effect nucleophilic reactivity. In the present study, by applying the DFT approach at the B3LYP/6-311G(d,p) level and the Møller-Plesset perturbation theory at the MP2/6-311G(d,p) level, the formoximate-induced reactivation patterns of the(More)
Using continuum electrostatics and QC/MM calculations, we investigate the catalytic cycle of the glycyl radical enzyme 4-hydroxyphenylacetate decarboxylase, an enzyme involved in the fermentative production of p-cresol from tyrosine in clostridia. On the basis of our calculations, we propose a five-step mechanism for the reaction. In the first step, the(More)
Pcetk (a pDynamo-based continuum electrostatic toolkit) is an open-source, object-oriented toolkit for the calculation of proton binding energetics in proteins. The toolkit is a module of the pDynamo software library, combining the versatility of the Python scripting language and the efficiency of the compiled languages, C and Cython. In the toolkit, we(More)
Bacterial peptidoglycan deacetylase enzymes are potentially important targets for the design of new drugs. In pathogenic bacteria, they modify cell-wall peptidoglycan by removing the acetyl group, which makes the bacteria more resistant to the host's immune response and other forms of attack, such as degradation by lysozyme. In this study, we have(More)
The relative stability of biologically relevant, hydrogen bonded complexes with shortened distances can be assessed at low cost by the electrostatic multipole term alone more successfully than by ab initio methods. These results imply that atomic multipole moments may help improve ligand-receptor ranking predictions, particularly in cases where accurate(More)