Miklós Gulácsi

  • Citations Per Year
Learn More
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid state of correlated metals is presented. The ESR measurables such as the signal intensity and the linewidth are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant(More)
Recent NMR experiments by Singer et al. [Singer, Phys. Rev. Lett. 95, 236403 (2005).] showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. Here, a comprehensive theory for the magnetic field and temperature dependent NMR 13C spin-lattice relaxation is given in the framework of the(More)
Finite temperature properties of a non-Fermi liquid system is one of the most challenging probelms in current understanding of strongly correlated electron systems. The paradigmatic arena for studying non-Fermi liquids is in one dimension, where the concept of a Luttinger liquid has arisen. The existence of a critical point at zero temperature in one(More)
We use a novel approach to analyze the one-dimensional spinless Falicov-Kimball model. We derive a simple effective model for the occupation of the localized orbitals which clearly reveals the origin of the known ordering. Our study is extended to a quantum model with hybridization between the localized and itinerant states: We find a crossover between the(More)
We investigate the newly discovered supersolid phase by solving in random phase approximation the anisotropic Heisenberg model of the hard-core boson He lattice. We include nearestand next-nearest-neighbor interactions and calculate exactly all pair correlation functions in a cumulant expansion scheme. Here we clarify the controversy over the role of the(More)
  • 1