Mikko Ylilauri

Learn More
N-methyl-D-aspartate (NMDA) receptors belong to a family of ionotropic glutamate receptors that contribute to the signal transmission in the central nervous system. NMDA receptors are heterotetramers that usually consist of two GluN1 and GluN2 monomers. The extracellular ligand-binding domain (LBD) of a monomer is comprised of discontinuous segments that(More)
Filamins (FLN) are large dimeric proteins that cross-link actin and work as important scaffolds in human cells. FLNs consist of an N-terminal actin-binding domain followed by 24 immunoglobulin-like domains (FLN1-24). FLN domains are divided into four subgroups based on their amino acid sequences. One of these subgroups, including domains 4, 9, 12, 17, 19,(More)
Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists(More)
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as(More)
  • 1