Learn More
Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe(More)
The mechanical properties of a cell determine many aspects of its behavior, and these mechanics are largely determined by the cytoskeleton. Although the contribution of actin filaments and microtubules to the mechanics of cells has been investigated in great detail, relatively little is known about the contribution of the third major cytoskeletal component,(More)
The virus isolated in RTG-2 cells from several independent outbreaks of viral haemorrhagic septicaemia of rainbow trout (Egtved disease) was shown to be morphologically very similar to vesicular stomatitis virus. A dense particle core inside a ribbed sheath and cytoplasmic inclusion bodies consisting of helices of the same diameter as the particle core, i.(More)
A number of morphological and statistical aspects of domain formation in singly and doubly supported ternary membranes have been investigated. Such ternary membranes produce macroscopic phase separation in two fluid phases and are widely used as raft models. We find that membrane interactions with the support surface can have a critical influence on the(More)
The actin-binding protein calponin has been previously implicated in actin cytoskeletal regulation and is thought to act as an actin stabilizer, but the mechanism of its function is poorly understood. To investigate this underlying physical mechanism, we studied an in vitro model system of cross-linked actin using bulk rheology. Networks with basic calponin(More)
The semiflexible polymers filamentous actin (F-actin) and intermediate filaments (IF) both form complex networks within the cell, and together are key determinants of cellular stiffness. While the mechanics of F-actin networks together with stiff microtubules have been characterized, the interplay between F-actin and IF networks is largely unknown,(More)
The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical(More)
Increased aortic stiffness is an acknowledged predictor and cause of cardiovascular disease. The sources and mechanisms of vascular stiffness are not well understood, although the extracellular matrix (ECM) has been assumed to be a major component. We tested here the hypothesis that the focal adhesions (FAs) connecting the cortical cytoskeleton of vascular(More)
We have previously reported that actin undergoes a conformational transition (which we named "maturation") during polymerization, and that the actin-binding protein, caldesmon (CaD), when added at an early phase of polymerization, interferes with this process (Huang et al. J Biol Chem 2010; 285:71). The pre-transition filament is characterized by relatively(More)
The intracellular cytoskeleton is an active dynamic network of filaments and associated binding proteins that control key cellular properties, such as cell shape and mechanics. Due to the inherent complexity of the cell, reconstituted model systems have been successfully employed to gain an understanding of the fundamental physics governing cytoskeletal(More)