Mikkel Christensen-Dalsgaard

Learn More
Prokaryotic toxin - antitoxin (TA) loci encode mRNA interferases that inhibit translation, either by cleaving mRNA codons at the ribosomal A site or by cleaving any RNA site-specifically. So far, seven mRNA interferases of Escherichia coli have been identified, four of which cleave mRNA by a translation-dependent mechanism. Here, we experimentally confirmed(More)
Prokaryotic toxin-antitoxin modules are involved in major physiological events set in motion under stress conditions. The toxin Doc (death on curing) from the phd/doc module on phage P1 hosts the C-terminal domain of its antitoxin partner Phd (prevents host death) through fold complementation. This Phd domain is intrinsically disordered in solution and(More)
Ribose methylations are the most abundant chemical modifications of ribosomal RNA and are critical for ribosome assembly and fidelity of translation. Many aspects of ribose methylations have been difficult to study due to lack of efficient mapping methods. Here, we present a sequencing-based method (RiboMeth-seq) and its application to yeast ribosomes,(More)
Vibrio cholerae codes for 13 toxin-antitoxin (TA) loci all located within the superintegron on chromosome II. We show here that the two higBA TA loci of V. cholerae encode functional toxins, HigB-1 and HigB-2, whose ectopic expression inhibits cell growth of Escherichia coli, and functional antitoxins, HigA-1 and HigA-2, which counteract the toxicity of the(More)
Ribose methylation is one of the two most abundant modifications in human ribosomal RNA and is believed to be important for ribosome biogenesis, mRNA selectivity and translational fidelity. We have applied RiboMeth-seq to rRNA from HeLa cells for ribosome-wide, quantitative mapping of 2'-O-Me sites and obtained a comprehensive set of 106 sites, including(More)
Prokaryotic toxin-antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an(More)
Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA cleaving enzymes such as RelE of Escherichia coli and the(More)
A key aspect of RNA secondary structure prediction is the identification of novel functional elements. This is a challenging task because these elements typically are embedded in longer transcripts where the borders between the element and flanking regions have to be defined. The flanking sequences impact the folding of the functional elements both at the(More)
The genome of Vibrio cholerae encodes two higBA toxin-antitoxin (TA) modules that are activated by amino-acid starvation. Here, the TA complex of the second module, higBA2, as well as the C-terminal domain of the corresponding HigA2 antitoxin, have been purified and crystallized. The HigBA2 complex crystallized in two crystal forms. Crystals of form I(More)
Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful(More)
  • 1