Mikio Kozuma

Learn More
We have observed Bragg diffraction of a Bose-Einstein condensate of sodium atoms by a moving, periodic, optical potential. The coherent process of Bragg diffraction produced a splitting of the condensate with unidirectional momentum transfer. Using the momentum selectivity of the Bragg process, we separated a condensate component with a momentum width(More)
Storage and retrieval of a squeezed vacuum was successfully demonstrated using electromagnetically induced transparency. The squeezed vacuum pulse having a temporal width of 930 ns was incident on the laser cooled 87Rb atoms with an intense control light in a coherent state. When the squeezed vacuum pulse was slowed and spatially compressed in the cold(More)
We have succeeded in observing ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. Squeezed vacuum pulses (probe lights) were incident on a laser-cooled 87Rb gas together with an intense coherent light (control light). A homodyne method sensitive to the vacuum state was employed for detecting the probe pulse(More)
We report the generation of a continuous-wave squeezed vacuum resonant on the Rb D1 line (795 nm) using periodically poled KTiOPO4 (PPKTP) crystals. With a frequency doubler and an optical parametric oscillator based on PPKTP crystals, we observed a squeezing level of -2.75+/-0.14 dB and an antisqueezing level of +7.00+/-0.13 dB. This system could be(More)
We construct a Mach-Zehnder interferometer using Bose-Einstein condensed rubidium atoms and optical Bragg diffraction. In contrast to interferometers based on normal diffraction, where only a small percentage of the atoms contribute to the signal, our Bragg diffraction interferometer uses all the condensate atoms. The condensate coherence properties and(More)
Storage and retrieval of parametric down-conversion (PDC) photons are demonstrated with electromagnetically induced transparency (EIT). Extreme frequency filtering is performed for THz order of broadband PDC light and the frequency bandwidth of the light is reduced to MHz order. Storage and retrieval procedures are carried out for the frequency filtered PDC(More)
The squeezed vacuum resonant on the (87)Rb D1 line (probe light) was injected into an optically dense rubidium gas cell with a coherent light (control light). The output probe light maintained its quadrature squeezing within the transparency window caused by the electromagnetically induced transparency (EIT). The results reported here are the first(More)
We show that by strongly modifying the dispersion properties of a four-level system, non-existing wave mixing channels can be opened and significantly enhanced. Specifically, we show that coherent optical four-wave mixing with a pump wave mediated by electromagnetically induced transparency (thereby propagating with an extremely slow group velocity) will(More)
Three-dimensional entanglement of orbital angular momentum states of an atomic qutrit and a single photon qutrit has been observed. Their full state was reconstructed using quantum state tomography. The fidelity to the maximally entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result confirms that the density matrix cannot be decomposed(More)
A probe light in a squeezed vacuum state was injected into cold 87Rb atoms with an intense control light in a coherent state. A sub-MHz window was created due to electromagnetically induced transparency, and the incident squeezed vacuum could pass through the cold atoms without optical loss, as was successfully monitored using a time-domain homodyne method.