Learn More
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2)(More)
Intraperitoneal administration of AY9944 causes accumulation of 7-dehydrocholesterol, appearance of abnormal neuronal cytoplasmic lamellar inclusions containing acid phosphatase activities, and degeneration of oligodendroglial cells. In the present study, we attempted to correlate appearance and disappearance of abnormal inclusions, oligodendroglial(More)
Reduced concentrations of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have been reported in the postmortem bipolar disorder (BD) brain. Additionally, an increased prevalence of BD has been related to low dietary intake of fish, and dietary supplements containing fish products or DHA have been reported to ameliorate BD symptoms.(More)
Polyunsaturated fatty acyl (PUFA) chains in both the ω3 and ω6 series are essential for normal animal brain development, and cannot be interconverted to compensate for a dietary deficiency of one or the other. Paradoxically, a dietary ω3-PUFA deficiency leads to the accumulation of docosapentaenoate (DPA, 22:5ω6), an ω6-PUFA chain that is normally scarce in(More)
BACKGROUND Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA,(More)
  • 1